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Remarks: Another family of windows can be constructed to outperform the cosine
family for FIR filter design. The family of windows, called Kaiser windows, can be
continuously tuned by a parameter f§ = 0.

Nevertheless, the cosine family is better suited for blockwise processing of streaming
audio and speech. We will cover it near the end of this semester.
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@ The Cosine-family Windows for Type-1 Design
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type I lc

pass design

Consider the type I' low-pass filter with a cutoff frequency of . We first shift the ideal
response to the right,

sinwe(n-N)
n(n-N)

Then, we design a filter by h{n] = win)g(n], and the window function win] is defined in
n=0:2N as follows,

* Rectangular: win) =1
* Hann: w{n] =0.5~0.5cos(xn/N)
* Hamming: win) = 0.54 - 0.46 cos(wn/N), and
* Blackmann: w{n] = 0.42 - 0.5cos(wn/N) +0.08cos(2xn/N).
Also, win] = 0 elsewhere. These windows are called the cosine family of windows.

glnl =

' Definition of Type I: {M ~ ) = hin] with M being an even number. See Sec. 5.7.3 of O&S.
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Definition and spectral properties

The Kaiser family of windows is expressed as follows, | / \
wfpy1-(5) '
win) = 7T, - :

where N = L;‘ n=0:M, fz0isaparameter, and
() denotes the zeroth-order modified Bessel
function of the first kind.

lo(w) =1+ (5 + A" + 2" 4

T T





image9.png
ﬁ-

jpe T+ l Aim=nI= Hin7),

M /s even
(M= /6)

Fa b e gt/ 01 IZ/(-?J /—(W_-a)f/

A 21,

¢ l‘
w__"’ /6 )\Arﬂ w(mg("—]

i / 13 (L) A
A0n1=0, Ve p





image10.png
85 L Al=n7= Aln 7,

/7'
M s even
I, I, 77, IS e
Gy if N=& 7”“"71:/@)'/_-(1?&7’-'
/l\\ (
N\
LI 3 4 >
(4 @
=01 lDA hr

w; X H) = “’“'140‘)
(3 Calgegl
002, \/
13 m Y hlnT] =0, szo




image11.png
oose ff and ording to th

o 15 Tramutis whth [ « v wiobows, & « Kancr (3 bmteper)}

tolerance level for the
approximation error
(=20log,,6). Then, finda
that may satisfy the
specification. Finally, choose
M to satisfy the transition
width requirement.

|

Appeonimation error (45)

l To design, first select a
|

gure 1: The performance of Kaiser windows vs. fixed windows
32 and w, = 7/2, see Fig, 7.33 of O&S).
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Constraints: Consider any arbitrary zero-phase type I filter h{n] definedon n=~N:N
with hl=n] = h(n).
Frequency response: A(w) = H(e") = hl0] + 2 X%, hin cos(wn).
Goal: To minimize the following objective function:
max|E(w)|
wel
where F denotes a union of passband(s) and stopband(s), and

B() = W(o)[Hye®) - Aw)

contains the desired response Hy(e*™) € R and a flexible weighting function W(w) > 0.
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a polynomial approximation problem

Define x = cosw and note that A(w) can always be written as a polynomial of xin (~1,1].
Denote the results conversion as

N N
Aw) = hi0]+2 Y hinjcos(wn) = P(x) = Y agxd*.
= =}

th

Remarks: cos(nw) := T,(cosw) and Ty(x) is called the ™ order Chebyshey polynomial.

Eg., Ta(x) =2x*-1.

Then, the problem formulation becomes to find the optimal N'-order polynomial P(x):

Py :mgmln( max Wp(x)|Dp(x) - P(x)|
PulR) \xecos(h)

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the

desired response in the x domain.
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\pplying the alternation theo! to assess optimality (Fig
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Figure 2: Suppose that Fp = [=1,<0.1]u[0.1,1], Dp(x) = 1 In |1, ~0.1] (passband), and Dp{(x) =0
0 {0.1,1] (stopband). Which one Is optimal?
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Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin [maxWp(x)| Dp(x) - I’(x)l]
Pym \xFy

Is that there exist at least N + 2 distinct values x; in Fp, denoted as xy < Xz <... < Xy42
such that

fori=1,2,..,N+ 1. Here, Ep(x) = Wp(x)[Dp(x) = P(x)).

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Converting to a polynomial approximation problem

Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1,1).
Denote the results conversion as
N

Alw) = h{0] +2 ): hin) cos(@n) = P(x) = Y agx*.
k=0

Remarks: cos(nw) := T,(cosw) and T,,(x) is called the n'®

Eg, Ta(x) =22 -1

order Chebyshev polynomial.

Then, the problem formulation becomes to find the optimal N™-order polynomial P(x):

P(x) =argmin| max_ Wp(x)|Dp(x) - P(x)]

PuR) \xecos(h)

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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T'he alternation theorem

Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin (ma_pr(.x]IDp(x) - Pl
Py \¥Fy

is that there exist at least N + 2 distinct values x; in Fp, denoted as x; < X <... < Xy42
such that

Eplxi)

ip(xpe1) = max| Ey(x)|
Xk,
fori=1,2,..,N+ 1. Here, Ep(x) = Wp(x)[Dp(x) - P(x)).

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Figure 2: Suppose that Fp = [~1,-0.1]U (0.1,1], Dp(x) = L in [~1,~0.1] (passband), and Dp(x) = 0
in [0.1,1] (stopband). Which one is optimal?
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Preparation

Constralints: Consider any arbitrary zero-phase type I filter h(n] definedon n=~N:N
with h[=n] = h(n).
Frequency response: A(w) = H(e*) = h{0) + 2XN_, hin)cos(wn).

n=1
Goal: To minimize the following objective function:

max|E(w)|
wel
where F denotes a union of passband(s) and stopband(s), and
E(w) = W) [Ha(e") - Aw)) m

contains the desired response Hy(e*) € R and a flexible weighting function W(w) > 0.
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Converting to a polynomial approximation problem

Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1,1].
Denote the results conversion as

N N
Aw) = hl0)+2 ) hin)cosn) = Py) = ). apx*.
n=1 =0
Remarks: cos(nw) := Ty(cosw) and Ty (x) is called the n™ order Chebyshev polynomial.
Eg., T(x)=2x2~1.

Then, the problem formulation becomes to find the optimal N™"-order polynomial P(x):

P = argmin [ max Wp(x)|Dp(x) - P(x)|
PuoePy () \xecos()

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1,1].
Denote the results conversion as

Alw) = h[0] +2 ): hln)cos(wn) = Px) = ¥ apr.
n=1 k=0

Remarks: cos(nw) := Ty(cosw) and Ty(x) is called the n'"

Eg, T(x) =22 -1.

order Chebyshev polynomial.

Then, the problem formulation becomes to find the optimal N™-order polynomial P(x):

P(x)= argmin | max_Wp(x)|Dp(x) - P(x)|
P(IEPy R) \XECOS(F)

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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The alternation theorem

Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin |maxWp(x)| Dp(x) = P(x)|
PePy®) \XFy

is that there exist at least N + 2 distinct values x; in Fp, denoted as x; < x; <... < Xn+2
such that
Ep(x)) = =Ep(x51) = £max| By (x)|
xeFy

fori=1,2,..,N+1. Here, Ep(x) = Wp(x)[Dp(x) - P(x)).

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Figure 2: Suppose that £, = [=1,~0.1]U[0.1,1], Dp(x) = 1 in [~1,~0.1] (passband), and Dp(x) = 0
in [0.1,1] (stopband). Which one is optimal?
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Summary

* The optimal approximation approach provides a unified framework for designing
low-pass, high-pass, band-pass, band-reject filters, and so on.

* Italso gives us the flexibility to vary the tolerance level between different bands.

* The search for the optimal polynomial involves 3 ‘R’ steps and 1 ‘S’ step: Random
guess, Refinement, Repeat, and a Stopping criterion. We will explain it next.
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clesr; close all;

omege_s =
x¢ = cos(omego_c)
xs = cos(omega_s);

omega_init = omega._nit(:);
L = Length(osega_init)-2;
xinit = cos(omega_init);
xprev = zeros(size(x_nit));

x_current = sort(x_init);
ol n 1e-4;

BigMatrix = zeros(L42,L02);
= zeros(Lez,1);
iternue =

while max(obs (x_prev-x_current)) > tol
for kk = 1iLel
BigMatrix(z,kk) = x_current,(kk-1);

ond
Bigatrix(1,end) = ((-1).4(0:L41)) "}
for kk = 1ile2
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end
Bigatrix(i,end) = ((-1).A(0:Le1))";
for Kk = 11Le2
A1 X_current(kk) >= xc % passband
W(kk) = 1
elsedf x current(kk) <= xs % stopband
W) = 8
end

ond
trpCoet f = BigHotrix\d; .
delta = abs(tepCoeff(end));

figure(1);
xxm -1,05:0.01:1,05;
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yy = tepCoeff(1)sones(size(xx)); ¥ constant term
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: setFontSizeForAll{14);

‘ pause;

‘ hold of f;
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- x_pew = roots (dydxCoeff(endi-1:1));

‘ Xpew = sort(x_new);
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© clear; close all;
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while max(abs
= for Kk = 1iLe1
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- end
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Lecture 9: The Kaiser Windows and the Optimal Approach

forType-1 FIR Design

Prof. Yi-Wen Liu

EE3660 Introduction to Digital Signal Processing
National Tsing Hua University

May 7, 2025
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Consider the type I' low-pass filter with a cutoff frequency of w,. We first shift the ideal
response to the right,

in)= sinwe(n-N)
8= -m

Then, we design a filter by h{n] = win)g(n], and the window function wn] is defined in
n=0:2N as follows,

* Rectangular: win] =
* Hann: win| = 0.5~0.5cos(xn/N)
* Hamming: win) = 0.54 - 0.46 cos(wn/N), and
* Blackmann: win] = 0.42-0.5cos(nn/N) +0.08 cos(2xn/N).
Also, win] = 0 elsewhere. These windows are called the cosine family of windows.

' Definition of Type I: (M ~ nl = hin] with M being an even number. See Sec. 5.7.3 of O&S.
e
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