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Lecture7 The Butterworth IIR filter
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Eqs. (1) and (2) inspire us to ask: Can we create a discrete-time version of Butterworth
filter, with a cut-off frequency and an adjustable roll-off rate, and so on?
A systematic answer is the following transformation:

s(2) = @)
where Ty is an adjustable parameter. Then, we can substitute Eq. (3) into Eq. (1) and
obtain a discrete-time version of the Butterworth filter; that is,

G(z) := H(s(2)) @

Exerclse: Calculate the inverse function of Eq. (3); i.e., express zas a function of s.





image12.png




image13.png
Let's take the third-order Butterworth as an example.

G2 H(s(2)





image14.png
(oK o T
=) /-2"
(7D ) 7’T

') £t
/A’%a;’ CH GO
(?) ("-n.z).wz ("“Z))

(2)= -
Az)= ‘S’{ V ’«{Z(O(r-»z")‘l-ﬂ:(w.fl}\>

2 +\_‘22 DZ\}




image15.png
Properties of the bilinear transformation g

© It maps the imaginary axis s = jQ2 to the unit circle z= ¢*. We have

2
Q=>tn?.

Ta

@ Itis a one-to-one mapping between the left half of s-plane {Re(s) < 0} and the
inside of the unit circle on the z-plane (|2l < 1).

© In general, Eq. (1) is analytic and therefore a conformal mapping {3/ 8.

4
© Every pole sp, of H(s) corresponds to a pole of G(2) at z, = %lf‘—’f Therefore,
1%
stability is preserved after bilinear transformation.

@ B(2) contains a factor of (1 +z~ )N,
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Implication of Q(w)

Figure 1: The frequency response Gle™) = H (j{2(w)). Note that Q2 € [0,c0) is mapped 00 s @ < .
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orth filter

Figure 2: An implementation of the 3rd-order Butterworth filter. The filter becomes a
Butterworth filter with cutoff frequency Q= 1 rad/swhen C; = 4/3 § Ry = 10, Ly =3/2 H and
Ls = 1/2 H. Stephen Butterworth (1885-1958) was a British engineer and physicist.
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Other analog prototypes (Optional, O&S gppendix B.2-B.3

H(j6)

© A Chebyshev filter. |H(Q)|? = m where ¢ is a design parameter and Viy(x)
an,
is the Nth-order Chebyshev polynomial.
@ An Elliptic filter. |H(Q)* = s} where Un(Q) is a Jacobian elliptic function.
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worth filter (Appendix B.1 of O&S

This following analog system has a monotonically decreasing ¥ ¥s ## magnitude
response,

a¥
H(9) = — e
ny, (s—n(d‘:' :w’("\‘]
This is an Nth order Butterworth filter, and its gain at Q = 0 is H(j0) = 1. In fact, its
magnitude response is

m

0 = _NI__A_
IH(Q)I* = T+ @y 2)
Check: 8

aY ol
MY, (~s-0cet
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W) COVIY, (s+ Qe t-W0 )

H(H(=$) = ...

e Sulteraush 08 e T TV e YT H




image4.png
yoifs





image26.emf
國立清華大學電機工程學 系   劉奕汶教授〡數位訊號處理概論教學板 書  



 


1


 


 


國立清華大學電機工程學


系


 


劉奕汶教授〡數位訊號處理概論教學板


書


 


Lecture


7


 


The Butterworth IIR filter


 




  1    

國立清華大學電機工程學 系   劉奕汶教授〡數位訊號處理概論教學板 書  

Lecture 7   The Butterworth IIR filter  

