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Lecture5 Linear Time-invariant Systems and 
z-Transform
[image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
2

image5.png
Examples of a causal LTI system

We can specify an important class of causal LTI systems by difference equations. An
example would be

yinl=yln=1]+yln-2] +x{n)
implemented iteratively in time, perhaps using a while loop, assuming that y{n] = 0 for
n<o0.

Exerclse: Is this system linear, time-invariant, and causal?

More generally, we will study all linear constant-coefficient difference equations
(LCCDESs) in the next lecture,
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@ The z-transform: Its usages and properties
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Definltlon: For any given sequence [p[n], n€ Z}, one can attempt to evaluate the

following expression
o

P@):= Y, pinlz™" @
=
on the complex plane z € C. P(z) is called the z-transform of p{n] which is well-defined
over the region where Eq. (2) converges.
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A remark about tk

otation

When the DTFT of a signal exists, it is equal to the signal's z-transform evaluated on the
unit circle (z= e*); that s,

DTFT(x{n)} = ¥ xinje " = [Znnlz"')l 5
0 0 =

This explains why the text book denotes DTFT as X(e*), so we have unified notation for
z-transform and Fourier transform.
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‘ourier transf pulse respc

(Convolution theorem): If y(n] = (h + x)[n] where h[n] denotes the impulse response of
an LTI system, then Y (2) = H(2)X(2).

Here, H(z2) is called the system function, and H(e™) is called the frequency response of
the system if it exists.

Meanings: When we write Y(e®) = H(e™) X(e"), |H(¢™)| means the gain a signal will
receive at frequency @, and ZH(e™) means the phase shift that the system will
introduce, as a function of . They are called the magnitude response and the phase
response, respectively.
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Example: Numerical differentiation

Assume that a discrete-time system is defined by the following equation:

x(n] = x{n-1]

A E==r—

where T denotes the sampling period for A/D and D/A conversion. Is the system causal?
Draw a sketch of the system’s impulse response. Does the frequency response exist? If
50, sketch out its magnitude response and phase response.
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ank you for listening

1. The next lecture will be about difference equations %4} Ji ¥, and solving them using

z-transform.

2. You can find Prof. Liu on Instagram and Threads ( ID=‘lineartimeinvariant’)
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Definitlon: A system is called causal if hin) =0 forall n< 0.

In this course, we are mostly interested in systems that are causal. We will learn how to
analyze a causal system, as well as how to design a causal system that meets certain
performance specifications.

Note: If an LT system is causal, then we have
"

nl= Y. xkihin-K.
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