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Lecture2 D/Continuous Conversion as Sinc Interpolation
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Let’s consider an analog filter with a frequency response F(jQ) as follows,

T, 1Ql<nfs,
0, otherwise.

H(jO) = {

Remarks:
© From Eq. (1), it should be clear that H(jQ)X(jQ) = X.(jQ).
@ This is the action of filtering, which is a multiplication in the frequency domain.

@ By convolution theorem, we can achieve filtering by convolving x;(#) with an
impulse response h(1), which is the inverse Fourier transform of H(j€2) in the time
domain.
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Derivation of the Inverse Fourier transft

In-class exerclse: show that

by = % (H(j) = f H(jQ) e d0 = s'n,,(T],

T

and draw a sketch of h(1).
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D/C conversion as Sinc Interpolation

The function ’lﬁﬂ is often called and denoted as the sinc function; that is, we write

sinc(0) = ""” . Be careful also to define that sinc(0) := lim,.. —m =1,

In the previous slide, we showed that h(f) = sinc(z¢/T). Can you draw a sketch of
convolving x;(£) = x.(£) ¥.,6(t— nT) with h()?

Highlight: Write x,(f) = ¥, x[n]6 (¢~ nT), and thus we have
() = x,(t) * h(t) = Y, x[n]sinc(z - nT), where * denotes convolution in time.
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Figure 1: The sinc filter is referred to as the ideal reconstruction filter.
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Additional Remarks from the Textbook (2/3)
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Figure 2: The idea of processing continuous-time signal in the discrete-time domain.
Discusslon: What are the advantages?
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Figure 3: (Optional) The actual practice of D/C conversion. D = Digital, A = Analog. Refer to
Sec. 4.8.4 of O&S if interested.
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Recap: C/D Conversion

Recall that 1
X(jQ) = F (x(0)s(0) = TZX,U(n—m,))A m
E

Thus, conceptually, we can use a low-pass filter to reconstruct x.(f) from x(n] = x.(n7T) as

long as the sampling rate f; is higher than 2 times the bandwidth B.

In this lecture, we will calculate the impulse response of the reconstruction filter first,
and then point out that what low-pass filtering does is essentially interpolation.
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