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[he type I low-pass design

Consider the type I' low-pass filter with a cutoff frequency of w,. We first shift the ideal

response to the right,
sinw.(n-N)

n(n-N)
Then, we design a filter by hln] = win]gin], and the window function wnj is defined in
=0:2N as follows,
* Rectangular: win =1
¢ Hann: win| = 0.5~0.5cos(xn/N)
* Hamming: win) = 0.54 - 0.46 cos(xn/N), and
* Blackmann: win] = 0.42 - 0.5cos(nn/N) +0.08 cos(2nn/N).
Also, win) = 0 elsewhere. These windows are called the cosine family of windows.

gln) =

'Definition of Type I: (M ~ n] = kin) with M being an even number. See Sec. 5.7.3 of O&S.
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Rivalry between the cosine and the Kaiser family

TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS
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Remarks: Another family of windows can be constructed to outperform the cosine
family for FIR filter design. The family of windows, called Kaiser windows, can be
continuously tuned by a parameter f§ = 0.

Nevertheless, the cosine family is better suited for blockwise processing of streaming
audio and speech. We will cover it near the end of this semester.
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@ The Cosine-family Windows for Type-1 Design
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[he type I low-pass design

Consider the type I' low-pass filter with a cutoff frequency of w,. We first shift the ideal

response to the right,
_sinwe(n-N)

glnl = w(n-N)

Then, we design a filter by h{n] = win)gln], and the window function u{n| is defined in
n=0:2N as follows,

* Rectangular: win] =1
* Hann: win] = 0.5~0.5cos(xn/N)
* Hamming: win) = 0.54 - 0.46 cos(wn/N), and
¢ Blackmann: win] = 0.42 - 0.5cos(xn/N) +0.08 cos(2xn/N).
Also, win] = 0 elsewhere. These windows are called the cosine family of windows.

! Definition of Type I: h{M = n] = k{n] with M being an even number. See Sec. 5.7.3 of O&S.
et b T K Wb e Ot g T VT

Definition and spectral properties

a > |
The Kaiser family of windows is expressed as follows, |4 %
h(py1-(75) i
win) = ———————=, %

l(p)

lo() denotes the zeroth-order modified Bessel S
function of the first kind. i -
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Figure 1: The performance of Kaiser windows vs. fixed windows
(M =32 and w, = n/2, see Fig. 7.33 of O&S).
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® Formulating FIR Design as an Optimal Approximation Problem
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Preparation

Constraints: Consider any arbitrary zero-phase type I filter h[n] definedon n=~N:N
with hl-n] = h{n].
Frequency response: A(w) = H(e*) = h[0] + 22,,,, hin]cos(wn).
Goal: To minimize the following objective function:
max|E(w)|
weF
where F denotes a union of passband(s) and stopband(s), and

E(w) = W()[Hy(e®) - Alw))

contains the desired response Hy(e™) € R and a flexible weighting function W(w) > 0.
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Converting to a polynomial approximation problem
Define x = cosw and note that A(w) can always be written as a polynomial of xin (=1,1].

Denote the results conversion as

N N
Alw) = h(o]+2 Y hinjcos(wn) = P(x) = Y apx*.
n=1 k=0

Remarks: cos(nw) := Ty(cosw) and Ty,(x) is called the n'™ order Chebyshev polynomial.
Eg, Ta(x) =2x% -1,
Then, the problem formulation becomes to find the optimal N"'-order polynomial P(x):

P(x):nrgmln( max, Wp(X)IDp(x) P(x)|

Pu(R) xecos(F

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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Applying the alternation theorem to assess optimality (Fig. 7.43 in O&S)
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Figure 2: Suppose that £, = (=1, <0.1] U [0.1,1], Dp{x) = 1 In |~1,~0.1] (passband), and Dp(x) =0
fn {0.1,1] (stopband). Which one Is optimal?
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I'he alternation theorem

Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin (ma_pr(X)IDP(x) = P(x)l)
Py \x€F

is that there exist at least N + 2 distinct values x; in Fp, denoted as x; < x2 <... < Xy42

such that
Ep(x) = = Ep(x441) = £max| Ep(x)|
xeky,

fori=1,2,..,N+ 1. Here, Ep(x) = Wp(x)[Dp(x) - P(x)).

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Converting to a polynomial approximation problem

Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1,1].
Denote the results conversion as

N N
Alw) = hi0] +2 Y hin)cos(wn) = P(x) = Y apx*.
n=1 k=0

Remarks: cos(nw) := Ty(cosw) and T,(x) is called the n'™ order Chebyshev polynomial.
Eg, Ta(x) =222 ~1.
Then, the problem formulation becomes to find the optimal N"-order polynomial P(x):

P(x) —argmln( max W,-(x)ll)p(x) P(x)l)
PyR) \xecos(F

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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[he alternation theorem

Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin [ma,pr(x)le(x) - P(x)l)
PyR) xek,

is that there exist at least N + 2 distinct values x; in Fp, denoted as x; < x3 <... < Xn42
such that
Ep(x)) = = Ep(xg1) = £max| Ep(x)|
Xk,

fori=1,2,..,N+ 1. Here, Ep(x) = Wp(x)|Dp(x) - P(x))].

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Applying the alternation theorem to assess optimality (Fig. 7.43 in O&S)

Figure 2: Suppose that Fy = [~1,=0.1]U (0.1,1], Dp(x) = L in [=1,~0.1] (passband), and Dp(x) =0
in (0.1, 1) (stopband). Which one Is optimal?
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Preparation

Constralnts: Consider any arbitrary zero-phase type I filter h(n] definedon n=~N: N
with h[=n] = h(n).
Frequency response: A(w) = H(e*) = h[0) + 22’,‘,:’,, hin)cos(wn).
Goal: To minimize the following objective function:
max| E(w)|
wel
where F denotes a union of passband(s) and stopband(s), and

E(w) = W(w)[Ha(e®) - Aw)) (1)

contains the desired response Hy(e*) € R and a flexible weighting function W(w) > 0.
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Converting to a polynomial approximation problem
Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1, 1].

Denote the results conversion as

N N
A(@) = h(0]+2 Y hinjcos(wn) = P(x) = Y apx.
k=0

n=1

Remarks: cos(nw) := Ty(cosw) and Ty(x) is called the '™ order Chebyshev polynomial.
Eg, T(x)=222~1.

Then, the problem formulation becomes to find the optimal N""-order polynomial P(x):

P(xy) = argmin ( max_ Wp(x)| Dp(x) = P(x)|
PiePy (R) \X€

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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Define x = cosw and note that A(w) can always be written as a polynomial of xin [~1,1].
Denote the results conversion as

N N
A) = h(0]+2 Y hin)cos(wn) = P(x) = ¥ agx.
k=0

n=1

Remarks: cos(nw) := Ty(cosw) and Ty (x) is called the n'" order Chebyshev polynomial.
E.g, T(x)=222-1.

Then, the problem formulation becomes to find the optimal N'"-order polynomial P(x):

P(x) = argmin { max_Wp(x)|Dp(x) - P(x)|
P(x)ePy (R) \X€cos(F)

where Wp(x) is the weighting after converting to the x domain and Dp(x) denotes the
desired response in the x domain.
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The alternation theorem

Let Fp denote a union of disjoint closed intervals of the real axis x. Then, the necessary
and sufficient condition for a unique

P(x) = argmin | maxWp(x)| Dp(x) — P(x)|
PePyR) \ X5

is that there exist at least N + 2 distinct values x; in Fp, denoted as x; < x3 < ... < Xn+2
such that
Ep(x)) = =Ep(xi41) = £max| Ep(x)|
x€F,

fori=1,2,.., N+ 1. Here, Ep(x) = Wp(x)[Dp(x) - P(x)).

Before we study how to find such a polynomial, let us visualize the theorem in the next
few slides.
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Applying the alternation theorem to assess optimality (Fig. 7.43 in O&S)
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Figure 2: Suppose that Fj, = [~1,~0.1]U (0.1, 1], Dp(x) = 1 in [~1,-0.1] (passband), and Dp(x) =
in [0.1,1] (stopband). Which one is optimal?

* The optimal approximation approach provides a unified framework for designing
low-pass, high-pass, band-pass, band-reject filters, and so on.

* It also gives us the flexibility to vary the tolerance level between different bands.

* The search for the optimal polynomial involves 3 ‘R’ steps and 1 ‘S’ step: Random
guess, Refinement, Repeat, and a Stopping criterion. We will explain it next.
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Please find <myTestPM.m> which uses

T eSpr— <myChebyPol.m> for Prof. Liu’s implementation
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clear; close all;

omega_c = 0,3ep1;

omega_s = 0.4epi;
= x¢ = cos(omega_c);
| xs = cos(

| omega_ihit = ( 12 0.17 omega_c/pl omega_s/pl 0.48 0.7 0.92 1)epi;
Somega_inft = (0, 05 0,12 0,17 0.26 omega_c/pi omega_s/pi 0.5 0,65 0.7 0.92 1)epi; & Le2 frequencies

omega_init = omega_init(:);
L = length(omega_init)-2;
x_init = cos(omega_init);
x_prev = zeros{size(x_init));

x_current = sort(x_init);
tol » le-4;

| BigMatrix » zeros(Le2,Le2);
W = zeros(Le2,1);
iternue = 1;

while max{abs(x_prev-x_current)) > tol
for kk = 1iLel
BigMatrix(:,hk) = x_current,*(kk-1);

ond
| BigMatrix(:,end) = ((~1).(0:Le1))";
| for kk = 1:Le2
| 11 x_current(hk) >= xc % passband
(k) = 1

wa - WO
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= e
W » zeros(Le2,1); 3
iternus = 1;
while max(abs(x_prev-x_current)) > tol
for kk = 1iLel
BigMatrix(:, kk) » x_current,”(kk-1);
end
BigMatrix(i,end) = ((~1).2(0:Le1))";
[ for kk = 1iLe2
| L x_current(kk) >= xc % passband
Hd(kk) = 1;
elself x_current(kk) <= xs % stopbond
k) =9
| ond '
| tepCoef! = BigMatrix\Wd;
i delta = abs(tepCoeff(end));
| Houro(l)}
[ = ~1,05:0 05
xlhumr = ones(sizelxx));
yy = teploeff(1)sones(size(xx)); % constant term
for kk = 1L
xthispower = xthispower,sxx;
\ Yy = yy ¢ teploeff(kkel)exthispower;
\ end
plot(xx,yy, 'LineWidth',2); hold on;
| Une(xc 1],(1 1), color*,"k');
| \ne([~1 xs),(0 9], color’,'k');
| Une([xc 1], [1+delta hdclul,'llrwﬂy\r' f.
ine( [xc 1], (1-delta l—dellll,'llnﬂlylr
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| ylabel(‘A(x)*); 5.
xUs([-1.95 1.985])
setFontSizeForAll(14);
| pause;
! hold off;
% Find L extrema of y(x) by identifying g(x) = dy/dx first.
power = 1:L; power = power(:);
dydxCoeff = teploeff(powersl) spower; & ol + (2022)x + (3003)x*2¢. . 4(Lva_L)x*(L-1)
N Find locations where 1st derivative vanishes
x_new = roots(dydxCoeff(end:-1:1));
x_new = sort(x_new);
| % Decide whether to include endpoints (that is xs1 and -1)
| i x new(l) < -1
[ x_new(l) = [
xnew = [x_new; 115
elsel! x_new(end)>1
x_newiend) = 1;
xnew = [-1; x_new);
else
| % Need to decide which of the end point to include.
% (hoose the one with the larger error,
I err_at_1 = sum(teploeff(1:L+1))~1;
' err_at_minusl = sun(tepCoeff(l:Lel). o(=1).~(0:L)");
[ Af sbs(err_at_minusl) > sbs(err_at_1)
xnew = (-1;x_new);
else
xnew = [x_new; 1);
end
| Xnew = lx_ne-, x¢; xs);
XD hx.smas ) w— L)
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| if x_new(l) < -1
| x_new(l) = ~1;
= [x_new; 1);

elself x_new(end)>1
x_new(end) = 1;
xnew = [=1; x_new);
else
% Need to decide which of the end point to include.
% (hoose the one with the larger error.
I err_at_1 = sus(tepCoeff(1:Le1))-1;
| err_at_minusl = sus(tepCoeff(1:Lel),o(~1).4(8:L)");
[ if abs(err_at_minusl) > abs(err_at_1)
= (=13 new);

else
xnew = [x_new; 1); 1

' end
l xnew = [x_new; xc; xs);
x_new = sort(x_new);
| x_prev = x_current;
| X_Current = X_new;
[ iternum = {ternum + 1;
end

W = myChedyPol(L);
2 = teploeff(1iend-1);

2); b{1); 1/2+b(2:end));

| freqz(h)
| setFontSizeForAll(14)
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e
TR —y T »
o e W TR Y e ke g e e
R s TV e e = o 4 2
N EE3660 Intro to O Yo _bred S Bely Sadvr By h T
N An attespt to fep RV M A 0B AT
N Yi-Wen Liv Ravwton 1, Cote « 80400
N May 2025 " v v v v v
clear; close all; -
omega_c 3epi;
onega_s = 0.4epi; ”
I~ xc = coslomega_c); / \
[ xs = cos{omega_s); \ 4
[ onega_init = (0,95 |
Somega_init = [(0.03 - frequencies
omega_init = omega_ $e
L = length(omega_in
x_init = cos(omega_ w
' x_prev = zeros{size
"
x_current = sort{x_ A
| tol = le-4; 7
) ”
[ BigMatrix = zeros(L
Hd = zeros(Le2,1); O AL AL Al Tk By § TR AU A T A '
iternum = 1; [
while max(abs(x_prev-x_current)) > tol -
for kk = 1ilel
BigMatrix(:,kk) = x_current,*(kk-1);
ond
I BigMatrix(:,end) = ((~1).~(8:L+1))";
| for kk = 1:Le2
| if x'_én;{;:m(:l) >= XC % passband
S Sbalerercanit it T o o s Ll
. == e
N R - A B P % oo ™
i e M R e e o e e
wneear w———— et - X "
e Vew bed Tesk Ombiep Sedes e B -

Dudes aon o

% A attespt to fep
N Yi-¥Wen Liv Bovwtin 1, Oote + 4 90

N Moy 2025 o I
clear; close all; '1

3epi; ese o) \

S A0DL] |1 e e et ook Cuviaap Sdes oy B
xc = cos(omegd <) lnyuwe a ou &
x5 = cos{omega_s);
| omega_init = (0.05 " v i H
vosega_init = (0.63 S ; frequencies
omega_init = omega ] l. '

L = length(omega_in

x_init = cos(omega
x_prev = zeros(size . ) “ . “ i B
Nommtend { wpmy (¢ drEvg |
x_current = sort(x] L]
| tol = le-4; -
| BigMatrix = zeros(U ,-
Hd = zeros(Le2,1); - o rv) vy o t

iternue = 1; 0 . " « “
Noment gy (1

while max(abs(x_prev:
! for kk = 1:Lel
\ BigMatrix(:,hk) = x_current.*(kk-1);
ond

| BigMatrix(:,end) = ((~1).%(8:Le1))";

[ for kk = 1:Le2

[ L x_current(kk) >» xc % passband
Hd(kk) = 1;
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