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'he analog Butterworth filter (Appendix B.1 of O&S)

This following analog system has a monotonically decreasing B ¥4 ¥ magnitude
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This is an Nth order Butterworth filter, and its gain at Q = 0 is H(J0) = 1. In fact, its

magnitude response is
1
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|H(Q)|* = 1+ Q)N (2)
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Motivation

Eqs. (1) and (2) inspire us to ask: Can we create a discrete-time version of Butterworth
filter, with a cut-off frequency and an adjustable roll-off rate, and so on?
A systematic answer is the following transformation:

2 1-z"}

8(2) = E e (3)

where T, is an adjustable parameter. Then, we can substitute Eq. (3) into Eq. (1) and
obtain a discrete-time version of the Butterworth filter; that is,

G(2) 1= H(s(2)) (4)

Exerclse: Calculate the inverse function of Eq. (3); i.e., express zas a function of s.
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Example: N

Let's take the third-order Butterworth as an example.
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Properties of the bilinear transformation g

© It maps the imaginary axis s = 2 to the unit circle z= e*. We have
2 (2]
Q=— -
T, (an
@ Itis a one-to-one mapping between the left half of s-plane {Re(s) < 0} and the
inside of the unit circle on the z-plane (|2} < 1).
© In general, Eq. (1) is analytic and therefore a conformal mapping (3§18 .

1+ L
© Every pole s, of H(s) corresponds to a pole of G(z) at z, = IT*‘_:: Therefore,
stability is preserved after bilinear transformation. 2
@ B(z) contains a factor of (142" 1)V,
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Implication of Q(w)
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Figure 2: An implementation of the 3rd-order Butterworth filter. The filter becomes a
Butterworth filter with cutoff frequency Q. = 1 rad/s when G, = 4/3 K Ry = 102, Ly =3/2 H and
Ly = 1/2 H. Stephen Butterworth (1885-1958) was a British engineer and physicist.

Other analog prototypes (Optional, O&S gppendix B.2-B.3
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© A Chebyshev filter. |H(jQ)|? = In"Vl(ﬂl(L)' where ¢ is a design parameter and Vy(x)
N
is the Nth-order Chebyshev polynomial.

@ An Elliptic filter. |H(jQ))* = Wb’ﬁ where Uy(€) is a Jacobian elliptic function.
N




% IR ERE B TR %
BIZEEEZ | BN B B RN




