

Lecture 7 The Butterworth IIR filter

Lecture 7: The Butterworth IIR filter

Prof. Yi-Wen Liu

EE3660 Introduction to Digital Signal Processing
National Tsing Hua University

April 10, 2025

The analog Butterworth filter as a prototype

The analog Butterworth filter (Appendix B.1 of O&S)

This following analog system has a *monotonically decreasing* 嚴格遞減 magnitude response,

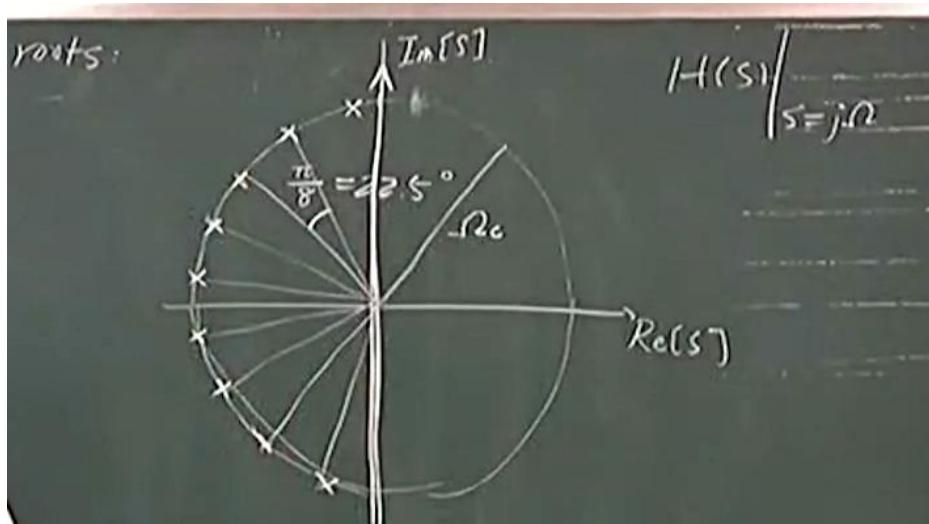
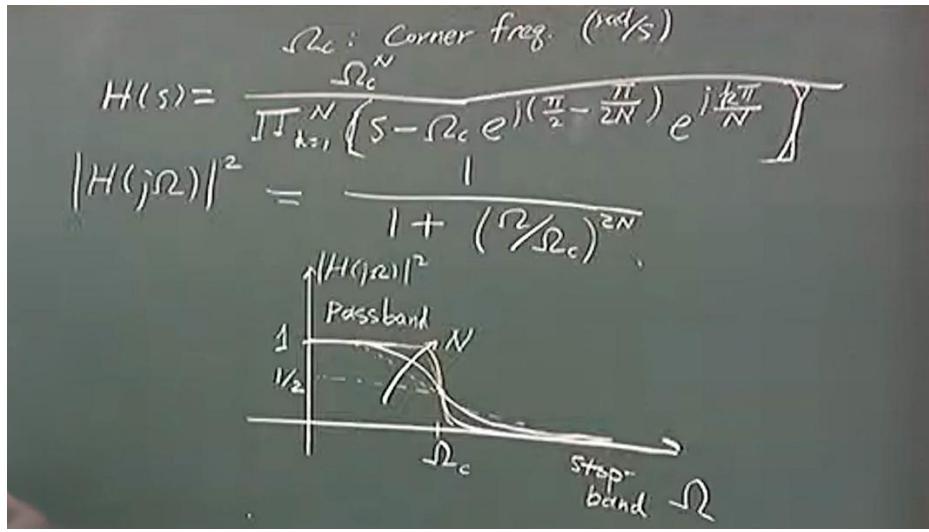
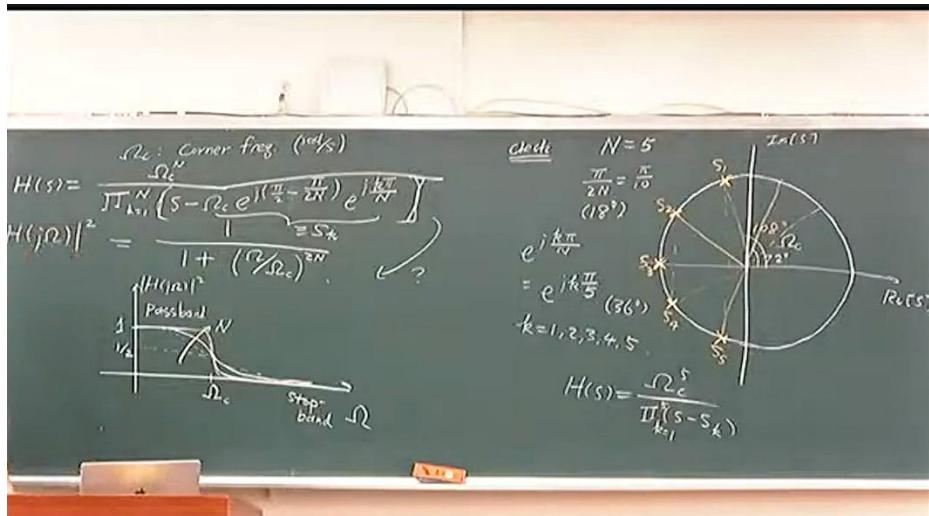
$$H(s) = \frac{\Omega_c^N}{\prod_{k=1}^N \left(s - \Omega_c e^{j(\frac{\pi}{2} - \frac{\pi}{2N})} e^{j\frac{k\pi}{N}} \right)} \quad (1)$$

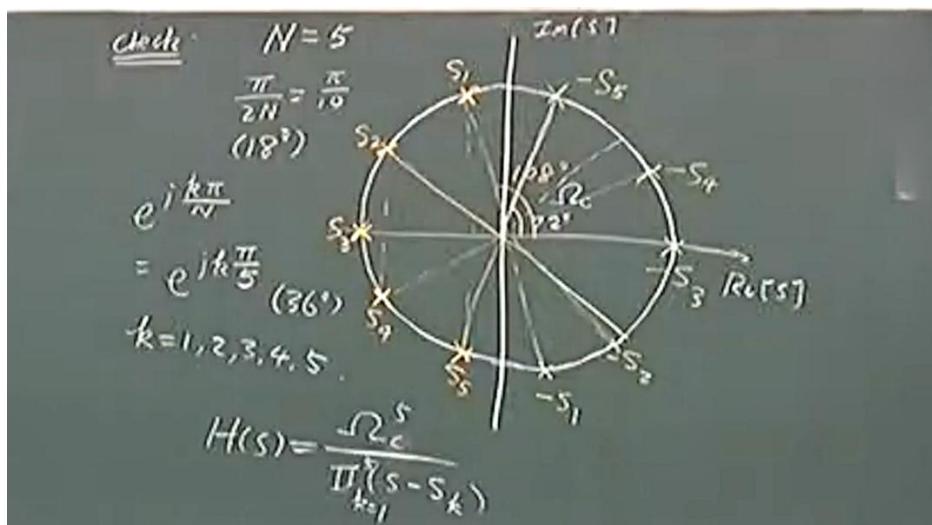
This is an N th order Butterworth filter, and its gain at $\Omega = 0$ is $H(j0) = 1$. In fact, its magnitude response is

$$|H(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}. \quad (2)$$

Check:

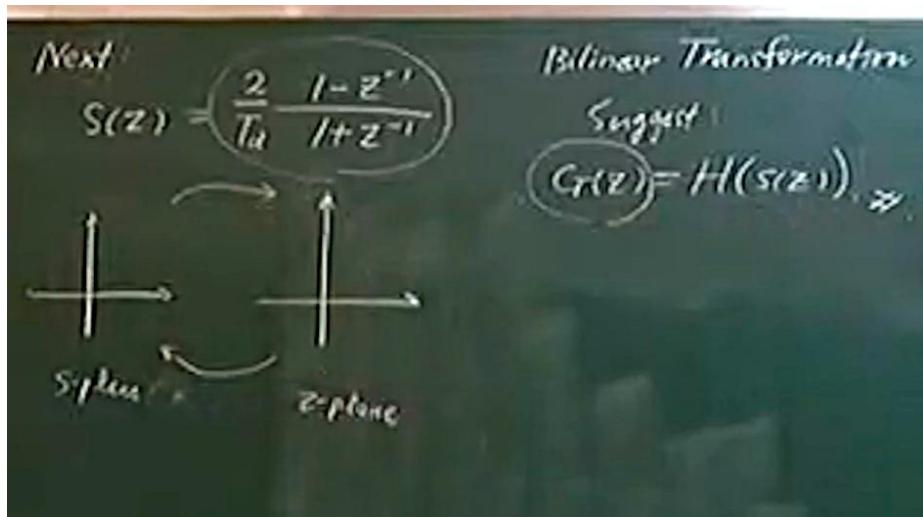
$$H(-s) = \frac{\Omega_c^N}{\prod_{k=1}^N \left(-s - \Omega_c e^{j(\frac{\pi}{2} - \frac{\pi}{2N})} e^{j\frac{k\pi}{N}} \right)} = \frac{\Omega_c^N}{(-1)^N \prod_{k=1}^N \left(s + \Omega_c e^{j(\frac{\pi}{2} - \frac{\pi}{2N})} e^{j\frac{k\pi}{N}} \right)}$$
$$H(s)H(-s) = \dots$$





$$\begin{aligned}
 H(-s) &= \frac{\Omega_c^s}{\prod_{k=1}^5 (-s - s_k)} = \frac{\Omega_c^s}{(-1)^s \prod_{k=1}^5 (s + s_k)} \\
 \boxed{H(s)H(-s)} &= \frac{\Omega_c^{s+0}}{(-1)^s \prod_{k=1}^5 (s - s_k)(s + s_k)} \\
 &= \frac{\Omega_c^{s+0}}{(-1)^s (s^2 - \Omega_c^{s+0})} \\
 \text{Evaluate (A) at } s = j\Omega &= \frac{(-1)^s (j\Omega^{s+0} - \Omega_c^{s+0})}{(-1)^s (-1 + j\Omega^{s+0} / \Omega_c^{s+0})^2} \\
 H(j\Omega)H(-j\Omega) &= \frac{\Omega_c^{s+0} 1}{(-1)^s (-1 + j\Omega^{s+0} / \Omega_c^{s+0})^2} \\
 &= \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{s+0}} \quad \text{Note } H(-j\Omega) = H(j\Omega)^* \\
 &= H(j\Omega)H^*(j\Omega) = |H(j\Omega)|^2
 \end{aligned}$$

Exercise: Generalized to $\forall N \in \mathbb{N}$.



The analog Butterworth filter as a prototype

Bilinear transformation

Extended Reading Materials

Motivation

Eqs. (1) and (2) inspire us to ask: Can we create a discrete-time version of Butterworth filter, with a cut-off frequency and an adjustable roll-off rate, and so on?
A systematic answer is the following transformation:

$$s(z) = \frac{2}{T_d} \frac{1 - z^{-1}}{1 + z^{-1}}, \quad (3)$$

where T_d is an adjustable parameter. Then, we can substitute Eq. (3) into Eq. (1) and obtain a discrete-time version of the Butterworth filter; that is,

$$G(z) := H(s(z)) \quad (4)$$

Exercise: Calculate the inverse function of Eq. (3); i.e., express z as a function of s .

Intro to DSP

Lecture 7: The Butterworth IIR Filter

April 23, 2025

6 / 12

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

$$\frac{T_d s}{2} = \frac{1 - z^{-1}}{1 + z^{-1}} \Rightarrow \frac{T_d s}{2} (1 + z^{-1}) = 1 - z^{-1}$$

$$\Rightarrow z^{-1} \left(1 + \frac{T_d s}{2} \right) = 1 - \frac{T_d s}{2}$$

$$\Rightarrow z = \frac{1 + \frac{T_d s}{2}}{1 - \frac{T_d s}{2}}$$

The analog Butterworth filter as a prototype Bilinear transformation Extended Reading Materials

Example: $N = 3$

Let's take the third-order Butterworth as an example.

$$\begin{aligned}
 G(z) &= H(s(z)) \\
 &= \frac{\Omega_c^3}{\prod_{k=1}^3 \left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} - \Omega_c e^{j(\frac{\pi}{2} - \frac{\pi}{6})} e^{j\frac{k\pi}{3}} \right)} \\
 &= \frac{\Omega_c^3}{\left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} + \Omega_c \right) \left[\left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} \right)^2 + \Omega_c \left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} \right) + \Omega_c^2 \right]} \\
 &= \dots \\
 &= \frac{B(z)}{A(z)}.
 \end{aligned}$$

$\times (1+z^{-1})^3$

Ω_c^3

$\left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} + \Omega_c \right) \left[\left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} \right)^2 + \Omega_c \left(\frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} \right) + \Omega_c^2 \right]$

$S = \frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}}$

$B(z) = \Omega_c^3 (1+z^{-1})^3$

$A(z) = \left(\frac{2}{T_d} (1+z^{-1}) + \Omega_c \right) (1+z^{-1})^2$

$A(z) = \left(\frac{2}{T_d} (1+z^{-1})^2 + \Omega_c (1+z^{-1}) + \Omega_c^2 \right)$

$= (1+z^{-1})^2 + 2z^{-1} + z^{-2}$

The analog Butterworth filter as a prototype Bilinear transformation Extended Reading Materials

Properties of the bilinear transformation

- ① It maps the imaginary axis $s = j\Omega$ to the unit circle $z = e^{j\omega}$. We have

$$\Omega = \frac{2}{T_d} \tan \frac{\omega}{2}.$$

- ② It is a one-to-one mapping between the left half of s -plane ($\text{Re}(s) < 0$) and the inside of the unit circle on the z -plane ($|z| < 1$).
- ③ In general, Eq. (1) is analytic and therefore a *conformal mapping* 保角變換.
- ④ Every pole s_p of $H(s)$ corresponds to a pole of $G(z)$ at $z_p = \frac{1 + \frac{T_d}{2} s_p}{1 - \frac{T_d}{2} s_p}$. Therefore, stability is preserved after bilinear transformation.
- ⑤ $B(z)$ contains a factor of $(1 + z^{-1})^N$.

Intro to DSP Lecture 7: The Butterworth HR Filter April 23, 2023

$$\text{If } s = j\omega \quad \therefore |Z| = 1$$

$$Z = \frac{1 + j\frac{T_d}{2}\Omega}{1 - j\frac{T_d}{2}\Omega} = e^{j\omega}$$

$$\therefore [\omega] = 4 \left(\underbrace{(1 + j\frac{T_d}{2}\Omega)}_{\text{Im}(s)} \right) - 4 \left(1 - j\frac{T_d}{2}\Omega \right)$$

$$\Rightarrow Z = \frac{1 + j\frac{T_d s}{2}}{1 - j\frac{T_d s}{2}} = \tan^{-1} \frac{T_d \Omega}{2} - \left(-\tan^{-1} \frac{T_d \Omega}{2} \right)$$

$$\text{If } s = j\omega \quad \therefore |Z| = 1$$

$$Z = \frac{1 + j\frac{T_d}{2}\Omega}{1 - j\frac{T_d}{2}\Omega} = e^{j\omega}$$

$$\therefore [\omega] = 4 \left(\underbrace{(1 + j\frac{T_d}{2}\Omega)}_{\text{Im}(s)} \right) - 4 \left(1 - j\frac{T_d}{2}\Omega \right)$$

$$\Rightarrow Z = \frac{1 + j\frac{T_d s}{2}}{1 - j\frac{T_d s}{2}} = \tan^{-1} \frac{T_d \Omega}{2} - \left(-\tan^{-1} \frac{T_d \Omega}{2} \right)$$

$$\text{If } s = j\omega \quad \therefore |Z| = 1$$

$$Z = \frac{1 + j\frac{T_d}{2}\Omega}{1 - j\frac{T_d}{2}\Omega} = e^{j\omega}$$

$$\therefore [\omega] = 4 \left(\underbrace{(1 + j\frac{T_d}{2}\Omega)}_{\text{Im}(s)} \right) - 4 \left(1 - j\frac{T_d}{2}\Omega \right)$$

$$\Rightarrow Z = \frac{1 + j\frac{T_d s}{2}}{1 - j\frac{T_d s}{2}} = \tan^{-1} \frac{T_d \Omega}{2} - \left(-\tan^{-1} \frac{T_d \Omega}{2} \right)$$

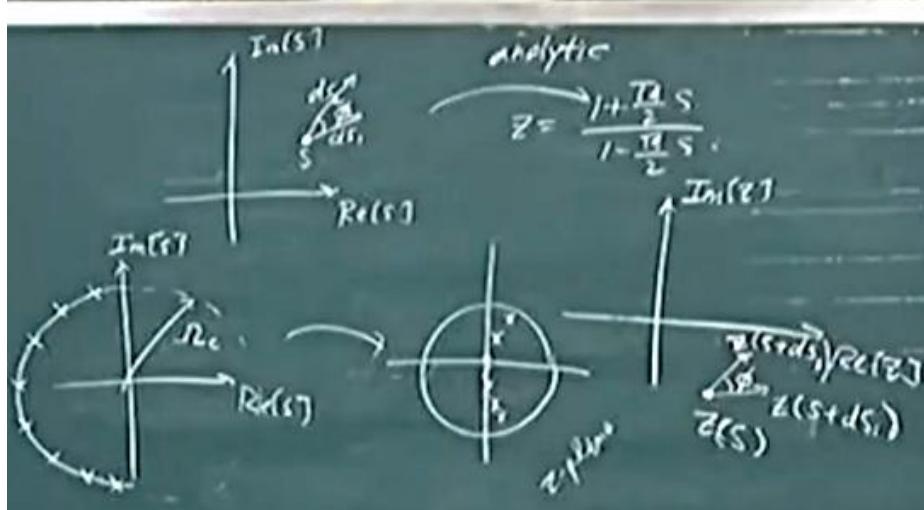
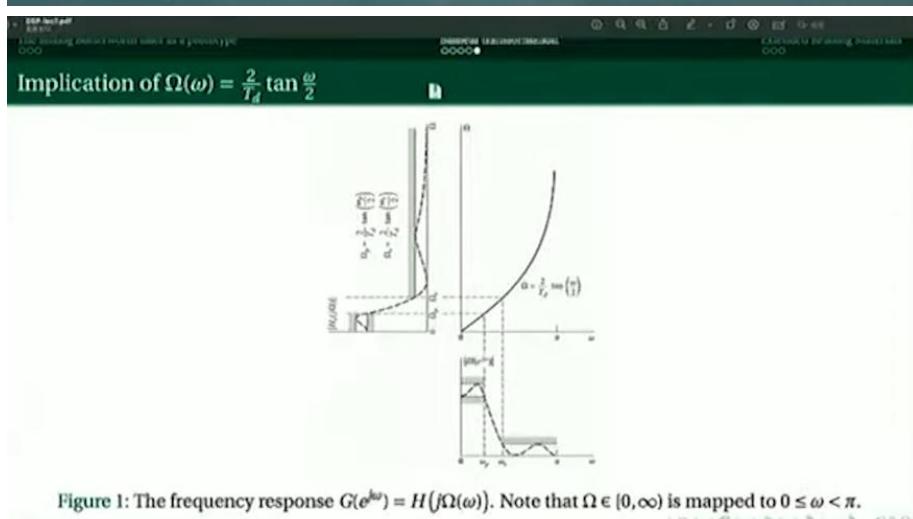
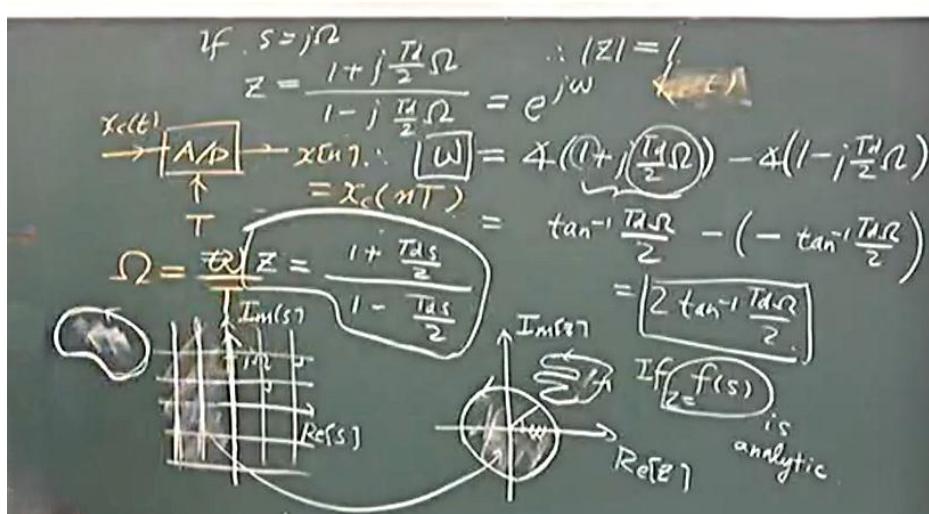


Figure 1: The frequency response $G(e^{j\omega}) = H(j\Omega(\omega))$. Note that $\Omega \in [0, \infty)$ is mapped to $0 \leq \omega < \pi$.



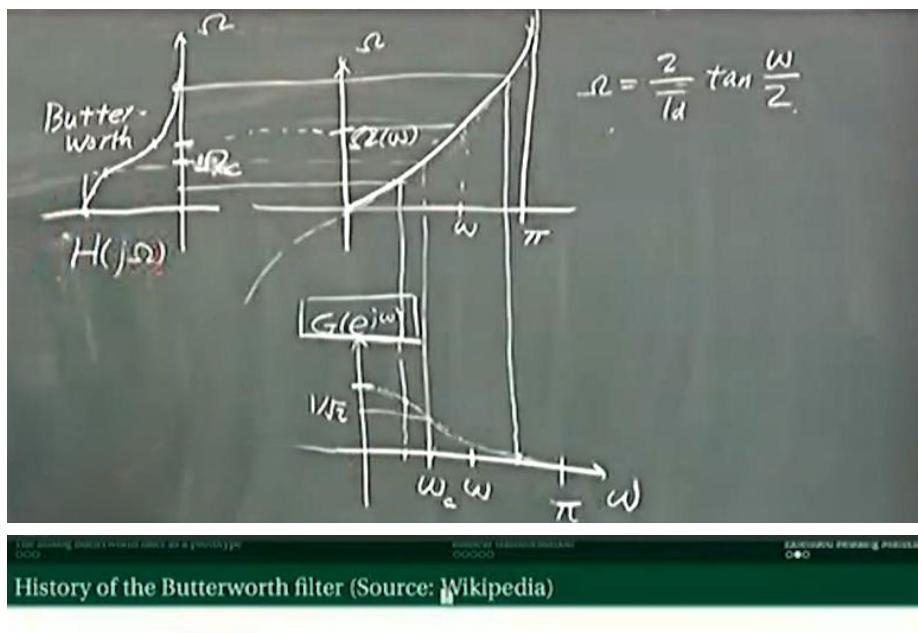
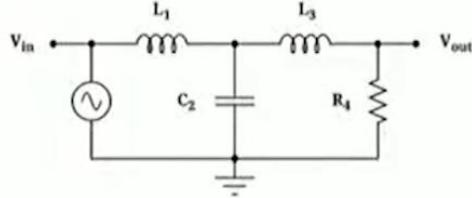


Figure 2: An implementation of the 3rd-order Butterworth filter. The filter becomes a Butterworth filter with cutoff frequency $\Omega_c = 1$ rad/s when $C_2 = 4/3$ F, $R_4 = 1\Omega$, $L_1 = 3/2$ H and $L_3 = 1/2$ H. Stephen Butterworth (1885-1958) was a British engineer and physicist.

