

Lecture6 Linear Constant Coefficient Difference Equations With Limitation on Using them Causally

General scope and formulation
Fibonacci Sequence as an Example

Lecture 6: Linear Constant Coefficient Difference Equations With Limitation on Using them Causally

Prof. Yi-Wen Liu
EE3660 Introduction to Digital Signal Processing
National Tsing Hua University
March 19, 2025

General scope and formulation
Fibonacci Sequence as an Example

General scope and formulation
Fibonacci Sequence as an Example

Definition and Notations

The following equation defines a causal LTI system with input $x[n]$ and output $y[n]$:

$$y[n] = \sum_{k=1}^M a_k y[n-k] + \sum_{k=0}^N b_k x[n-k], \quad (1)$$

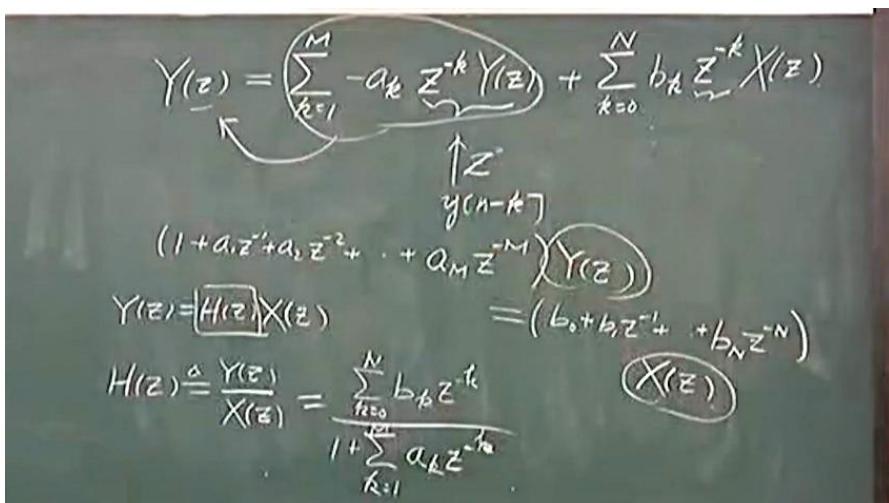
where coefficients a_k 's and b_k 's are real-valued constants. We call this a *linear constant coefficient difference equation* (LCCDE).

We can take the z-transform on both side, and define a *system function* as follows,

$$H(z) := \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + \dots + a_M z^{-M}} \equiv \frac{B(z)}{A(z)}. \quad (2)$$

Navigation: Home | Back | Forward | Search | Help | Logout

Intro to DSP | Lecture 6: Linear Constant Coefficient Difference Equations | March 19, 2025 | 3 / 13



General scope and formulation
Fibonacci Sequence as an Example

Key questions

- Given a_k 's and b_k 's, how do we calculate the impulse response of this system?
- How do we ensure that the system is *stable*, in a certain sense?

The answer to the second question is that the roots for the polynomial 多項式 $A(z) = 0$ all need to be inside the *unit circle*; that is, if $A(z_p) = 0$, we must have $|z_p| < 1$. We will explain by examples.

Navigation: Home | Back | Forward | Search | Help | Logout

Intro to DSP | Lecture 6: Linear Constant Coefficient Difference Equations | March 19, 2025 | 4 / 13

General scope and formulation
Fibonacci Sequence as an Example

① General scope and formulation
② Fibonacci Sequence as an Example

General scope and formulation
Fibonacci Sequence as an Example

Solution by z-transform tricks

Consider the system $y[n] = y[n-1] + y[n-2] + x[n]$. Let's calculate its impulse response $h[n]$. By definition, we can write

$$h[n] = h[n-1] + h[n-2] + \delta[n].$$

By z-transform, we have

$$H(z)(1 - z^{-1} - z^{-2}) = 1.$$

Thus,

$$H(z) = \frac{1}{1 - z^{-1} - z^{-2}} = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})}, \quad (3)$$

where p_1 and p_2 are the two roots to $A(z) = 1 - z^{-1} - z^{-2}$.

Exercise: Calculate p_1 and p_2 .

Intro to DSP | Lecture 6: Linear Constant Coefficient Difference Equations | March 19, 2025 | 6 / 13

$$(1 - p_1 z^{-1} - p_2 z^{-2}) = (1 - p_1 z^{-1})(1 - p_2 z^{-1})$$

$$p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2 \cdot 1}$$

$$= \frac{1 \pm \sqrt{5}}{2}$$

General scope and formulation
Fibonacci Sequence as an Example

Solution by z-transform tricks (Cont'd)

The next trick is to perform *partial fractional decomposition*—if $A(z)$ does not have any *multiple root* 重根 and $B(z)$'s *order* 階數 is lower than that of $A(z)$, then $B(z)/A(z)$ can be written in the following form,

$$\frac{B(z)}{A(z)} = \sum_{k=1}^M \frac{\alpha_k}{1-p_k z^{-1}},$$

where p_k 's are the roots of $A(z)$ and α_k 's need to be determined.¹

Exercise: Calculate α_k 's for the case $B(z) = 1$ and $A(z) = 1 - z^{-1} - z^{-2}$.

¹The situation is a bit more complicated if $A(z)$ has any multiple roots.

$$\begin{aligned} 1 - z^{-1} - z^{-2} &= ((1 - p_1 z^{-1})(1 - p_2 z^{-1})) \\ p_{1,2} &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ b &= -(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)} \\ c &= 2 \cdot 1 \\ &= \frac{1 \pm \sqrt{5}}{2} \\ H(z) &= \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-1}} \end{aligned}$$

General scope and formulation
Fibonacci Sequence as an Example

Standard trick:

Intro to DSP | Lecture 6: Linear Constant Coefficient Difference Equations | March 19, 2025 | 8 / 13

Sol 2: Both sides $\times (1 - p_1 z^{-1})$

$$\Rightarrow \frac{1}{1 - p_2 z^{-1}} = \alpha_1 + \frac{\alpha_2 (1 - p_1 z^{-1})}{1 - p_2 z^{-1}}$$

Then, consider $|z = p_1|$

$$\Rightarrow \frac{1}{1 - \frac{p_2}{p_1}} = \alpha_1 + \frac{\alpha_2 (1 - p_1/p_1)}{1 - p_2/p_1}$$

SM. 1: $P_{1,2} = \frac{1 \pm \sqrt{5}}{2}$ $\alpha_1 = \frac{1}{1 - \frac{1 + \sqrt{5}}{2} z^{-1}}$

$$H(z) = \frac{(1 - p_1 z^{-1})(1 - p_2 z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} = \frac{\alpha_1 (1 + \sqrt{5})/2 \sqrt{5} - (1 - \sqrt{5})/2 \sqrt{5} \alpha_2}{1 - p_1 z^{-1} (1 + \sqrt{5})/2 \sqrt{5} - (1 - \sqrt{5})/2 \sqrt{5} p_2 z^{-1}}$$

$$= \frac{\alpha_1 (1 - p_2 z^{-1}) + \alpha_2 (1 - p_1 z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} \text{ naive 天真}$$

$$\Rightarrow \begin{cases} \alpha_1 + \alpha_2 = 1 \\ \alpha_1 p_2 + \alpha_2 p_1 = 0 \end{cases}$$

Forcing an equality after partial fractional decomposition

Now, the next trick is to apply the following identity (with a leap of faith),

$$\frac{\alpha_k}{1 - p_k z^{-1}} \equiv \alpha \left(1 + p_k z^{-1} + p_k^2 z^{-2} + p_k^3 z^{-3} \dots \right) \quad (4)$$

The equality will hold as long as $|z| > |p_k|$. Applying this to Eq. (3), we have

$$H(z) = \frac{(1 + \sqrt{5})/2 \sqrt{5}}{1 - \left(\frac{1 + \sqrt{5}}{2}\right) z^{-1}} - \frac{(1 - \sqrt{5})/2 \sqrt{5}}{1 - \left(\frac{1 - \sqrt{5}}{2}\right) z^{-1}} \quad (5)$$

$$= \sum_{n=0}^{\infty} \left(\frac{1 + \sqrt{5}}{2 \sqrt{5}} p_1^n - \frac{1 - \sqrt{5}}{2 \sqrt{5}} p_2^n \right) z^{-n} \quad (6)$$

$$\equiv \sum_{n=0}^{\infty} h[n] z^{-n} \quad (7)$$

$H(z) = \frac{1}{1 - z^{-1} - z^2} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-1}}$

where $P_{1,2} = \frac{1 \pm \sqrt{5}}{2}$

$\alpha_1 = \frac{1 + \sqrt{5}}{2 \sqrt{5}}, \alpha_2 = \frac{1 - \sqrt{5}}{2 \sqrt{5}}$ 級數

$H(z) = \sum_{n=0}^{\infty} \underbrace{(\square - \square)}_{\text{power-series}} z^{-n}$

$= \sum_n h[n] z^{-n}$

$\Rightarrow h[n] = \begin{cases} \frac{1 + \sqrt{5}}{2 \sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n - \left(\frac{1 - \sqrt{5}}{2 \sqrt{5}}\right) \left(\frac{1 - \sqrt{5}}{2}\right)^n, & n \geq 0 \\ 0, & n < 0 \end{cases}$

$$H(z) = \frac{1}{1 - z^{-1} - z^2} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-1}}$$

where $p_{1,2} = \frac{1 \pm \sqrt{5}}{2}$

$y(n) = y(n-1) + y(n-2) + x(n)$

$H(z) = \sum_{n=0}^{\infty} (h(n)z^{-n})$ Power-series

$= \sum_n (h(n)z^{-n})$

$$\Rightarrow h(n) = \begin{cases} \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n, & n \geq 0 \\ 0, & n < 0 \end{cases}$$

$$h(n) = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1-\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad n \geq 0$$

Check:

$n=0, \quad h(0) = \frac{1+\sqrt{5}}{2\sqrt{5}} ()^0 - \frac{1-\sqrt{5}}{2\sqrt{5}} ()^0$

$$h(0) = \frac{1+\sqrt{5} - (1-\sqrt{5})}{2\sqrt{5}} = 1$$

$n=1, \quad h(1) = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right) - \frac{1-\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)$

$$= \frac{(1+\sqrt{5})^2 - (1-\sqrt{5})^2}{4\sqrt{5}} = \frac{6+2\sqrt{5} - (6-2\sqrt{5})}{4\sqrt{5}} = 1$$

$$H(z) = \frac{1}{1 - z^{-1} - z^2} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-1}}$$

where $p_{1,2} = \frac{1 \pm \sqrt{5}}{2}$

$y(n) = y(n-1) + y(n-2) + x(n)$

$H(z) = \sum_{n=0}^{\infty} (h(n)z^{-n})$ Power-series

$= \sum_n (h(n)z^{-n})$

$$\Rightarrow h(n) = \begin{cases} \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n, & n \geq 0 \\ 0, & n < 0 \end{cases}$$

Discussion: Region of Convergence (ROC)

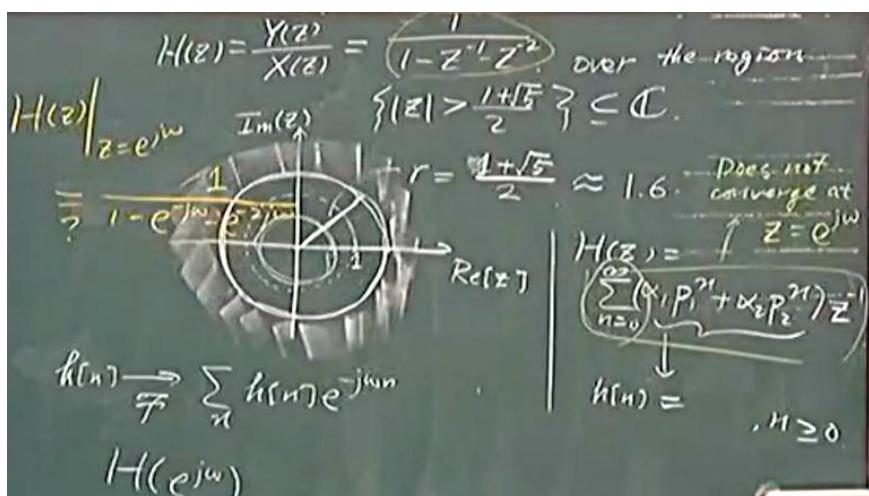
- What we have obtained is an expansion of $H(z)$ as a *power series* of z^{-1} .
- Eq. (6) holds over the region $|z| > \max\{|p_1|, |p_2|\} = \frac{1+\sqrt{5}}{2}$.
- By comparing the coefficients on the two sides² of Eq. (7), we have a general expression for $h[n]$.
- The region $\{|z| > \frac{1+\sqrt{5}}{2}\} \subseteq \mathbb{C}$ is called the *region of convergence (ROC)* of this causal system.
- Note that the ROC does not include the unit circle $\{|z| = 1\}$. In other words, the Fourier transform of $h[n]$ does not exist.

²this is a basic property of power series.

回到 DSP | Lecture 6: Linear Constant Coefficient Difference Equations | March 19, 2025 | 10 / 13

$$\begin{aligned}
 H(z) &= \frac{1}{1 - p_1 z^{-1} - p_2 z^{-2}} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-2}} \\
 &\text{where } P_{1,2} = \frac{1 \pm \sqrt{5}}{2} \\
 y(n) &= y(n-1) + \underbrace{y(n-2)}_{\substack{+ x(n) \\ \text{+ } x(n-1)}} \quad \alpha_1 = \frac{1+\sqrt{5}}{2\sqrt{5}}, \quad \alpha_2 = \frac{-(1-\sqrt{5})}{2\sqrt{5}} \quad \text{累級數} \\
 H(z) &= \sum_{n=0}^{\infty} (\alpha_1 p_1^n + \alpha_2 p_2^n) z^{-n} \quad \text{power-series} \\
 &= \sum_n (h(n) z^{-n}) \quad |p_1 z^{-1}| < 1, |p_2 z^{-2}| < 1 \\
 &\Rightarrow h(n) = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad n \geq 0 \\
 &\quad 0, \quad n < 0
 \end{aligned}$$

$$\begin{aligned}
 H(z) &= \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1} - z^{-2}}, \quad \text{over the region} \\
 &\quad \left\{ |z| > \frac{1+\sqrt{5}}{2} \right\} \subseteq \mathbb{C} \\
 &\quad \text{Im}(z) \quad r = \frac{1+\sqrt{5}}{2} \approx 1.6 \dots \\
 &\quad \text{Re}(z) \\
 h(n) &\Rightarrow \sum_n h(n) e^{-j\omega n} \quad H(e^{j\omega}) \\
 &\quad \left| \begin{array}{l} H(z) = \sum_{n=0}^{\infty} (\alpha_1 p_1^n + \alpha_2 p_2^n) z^{-n} \\ h(n) = \dots, \quad n \geq 0 \end{array} \right.
 \end{aligned}$$



Remarks on stability

Note that $\lim_{n \rightarrow \infty} h[n]$ does not converge. Therefore, the system is not stable in the *bounded-input bounded-output* (BIBO) sense.

Even though Fibonacci sequence is fun to study, in principle we avoid designing an LTI system that is not BIBO stable.

Therefore, when given an LCCDE in the form of Eq. (1), we want to check if any of the roots p_j of $A(z)$ is outside the unit circle. If $|p_j| > 1$ for a certain j , the LCCDE will have a diverging impulse response as n approaches infinity.

The roots of $A(z)$ are called the *poles* 極點 of the system.

Exercise

Suppose that we have an LTI system with impulse response $h[n]$ and system function $H(z) = B(z)/A(z)$ where $B(z)$ and $A(z)$ are polynomials of z^{-1} . Assume that the system is causal and BIBO stable. Which of the following statements are true?

- ① All the poles of the system are inside the unit circle.
- ② The Fourier transform of $h[n]$ exists.
- ③ $\lim_{n \rightarrow \infty} h[n] = 0$.
- ④ $H(z)$ converges over the entire complex plane except at $z = 0$.

$$\begin{aligned}
 H(z) &= \frac{1}{1 - z^{-1} - z^{-2}} = \frac{\alpha_1}{1 - p_1 z^{-1}} + \frac{\alpha_2}{1 - p_2 z^{-1}} \\
 y[n] &= -\sum_{k=1}^{M-1} a_k y[n-k] + \sum_{k=0}^{N-1} b_k x[n-k] \\
 H(z) &= \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + \dots + a_M z^{-M}} \\
 &= \frac{(1 - g_1 z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1}) \dots (1 - p_M z^{-1})} \\
 p_1, \dots, p_M &: \text{"poles", 極點} \\
 g_1, \dots, g_N &: \text{"zeros", 零點}
 \end{aligned}$$

$$\begin{aligned}
 H(z) &= \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1} - z^{-2}} \text{ over the region} \\
 H(z) \Big|_{z=e^{j\omega}} &= \frac{1}{1 - e^{-j\omega} - e^{-j2\omega}} \quad \left\{ |z| > \frac{1+\sqrt{5}}{2} \right\} \subseteq \mathbb{C} \\
 &= \frac{1}{1 - e^{-j\omega} - e^{-j2\omega}} + r = \frac{1+\sqrt{5}}{2} \approx 1.6 \quad \text{Does not converge at } z=e^{j\omega} \\
 h[n] &\rightarrow \sum_n h[n] e^{-j\omega n} \quad \left| \begin{array}{l} H(z) = \int_{-\infty}^{\infty} h[n] e^{jn\omega} \\ \left(\sum_{n=0}^{\infty} (\alpha_1 p_1^{n-1} + \alpha_2 p_2^{n-1}) z^{-n} \right) \end{array} \right. \\
 H(e^{j\omega}) &
 \end{aligned}$$

This is not recommended: Let the time go backward

If we begin with $y[n] = y[n-1] + y[n-2] + x[n]$, we can re-organize it as $y[n-2] = y[n] - y[n-1] - x[n]$. Since the equation holds for all n , you can substitute n by $n+2$ and obtain the following result:

$$y[n] = -y[n+1] + y[n+2] - x[n+2].$$

Mathematically this is not wrong; it is just not "recommended" because it can lead to a problematic interpretation in terms of programming. This line of "code" requires that the present output $y[n]$ depends on future output samples $y[n+1]$ and $y[n+2]$ as well as the future input sample $x[n+2]$. In other words, the same equation also defines a non-causal system.

In this course, we will not further develop this way of rewriting an LCCDE because it is impractical in my opinion.

$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1}Z^{-2}}$ over the region
 $|z| > \frac{1+\sqrt{5}}{2} \approx 1.6$ Does not converge at $z = 0$
 $H(z) \Big|_{z=e^{j\omega}} = \frac{1}{1 - e^{-j\omega}Z^{-2}}$
 $\Rightarrow r = \frac{1+\sqrt{5}}{2} \approx 1.6$ converges at $z = e^{j\omega}$
 $h(n) \rightarrow \sum_n h(n) e^{-j\omega n}$
 $H(e^{j\omega}) \triangleq \sum_{n=-\infty}^{\infty} h(n) e^{-jn\omega}$

This is not recommended: Let the time go backward

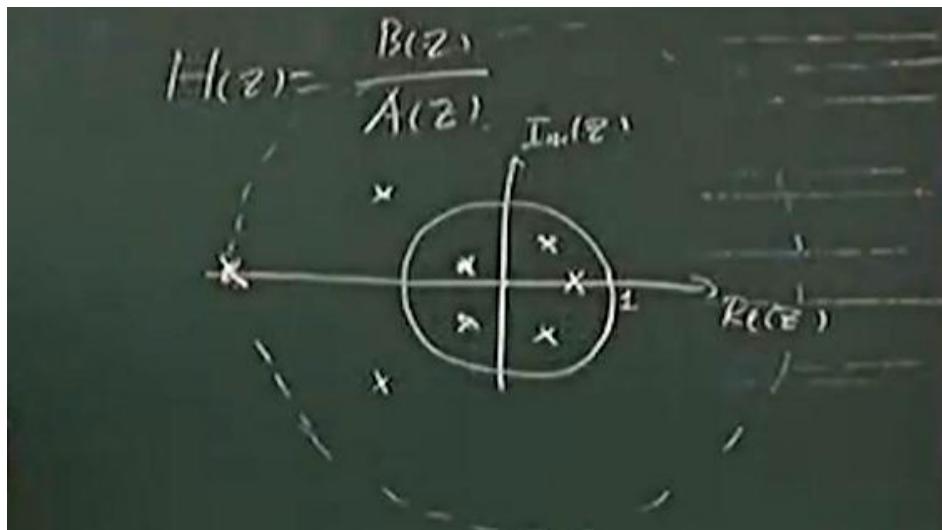
If we begin with $y[n] = y[n-1] + y[n-2] + x[n]$, we can re-organize it as $y[n-2] = y[n] - y[n-1] - x[n]$. Since the equation holds for all n , you can substitute n by $n+2$ and obtain the following result:

$$y[n] = -y[n+1] + y[n+2] - x[n+2].$$

Mathematically this is not wrong; it is just not "recommended" because it can lead to a problematic interpretation in terms of programming. This line of "code" requires that the present output $y[n]$ depends on future output samples $y[n+1]$ and $y[n+2]$ as well as the future input sample $x[n+2]$. In other words, the same equation also defines a non-causal system.

In this course, we will not further develop this way of rewriting an LCCDE because it is impractical in my opinion.

$y[n] = y[n-1] + y[n-2] + x[n], \forall n$
 Let $n' = n+2$
 $y[n'] = y[n+2] = y[n+1] + \underline{y[n]} + x[n+2]$
 $\Rightarrow y[n+2] - y[n+1] - x[n+2] = y[n]$
 $y[n] = y[n+2] - y[n+1] - x[n+2]$



Overview of Lecture 7,8,& 9: Filter Design Methods

Prof. Yi-Wen Liu

EE3660 Introduction to Digital Signal Processing
National Tsing Hua University

April 10, 2025

Navigation icons: Home, Back, Forward, Stop, Refresh, etc.

Page: 178

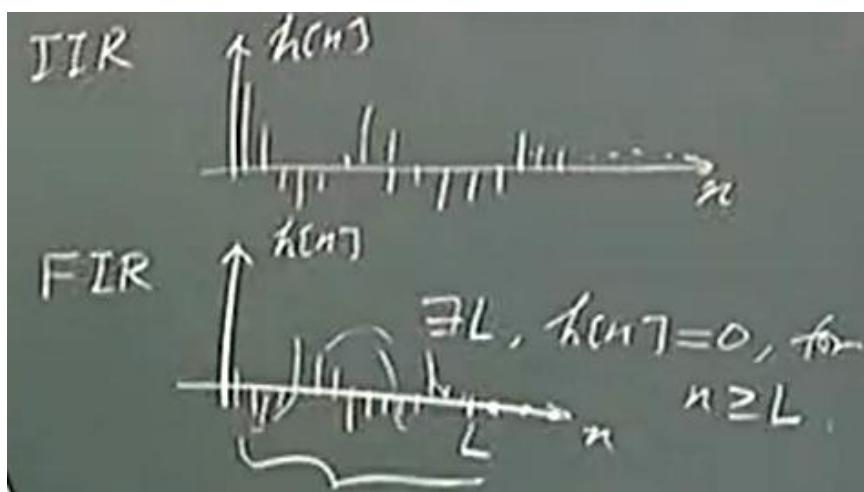
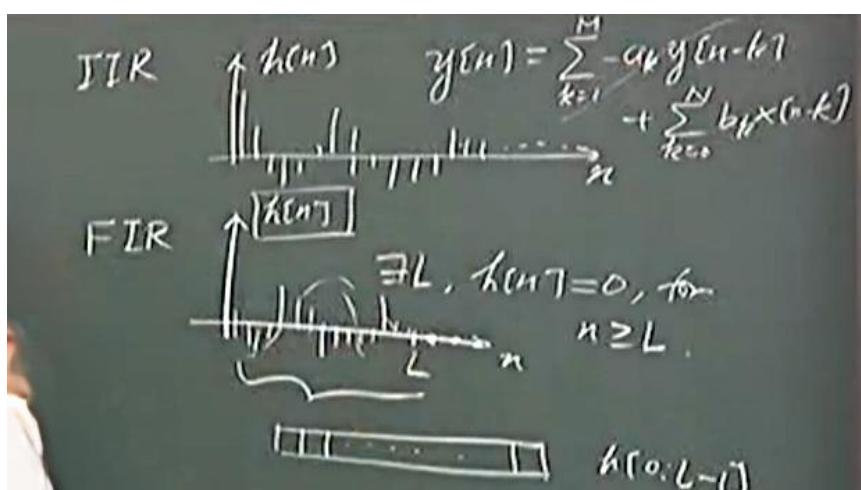
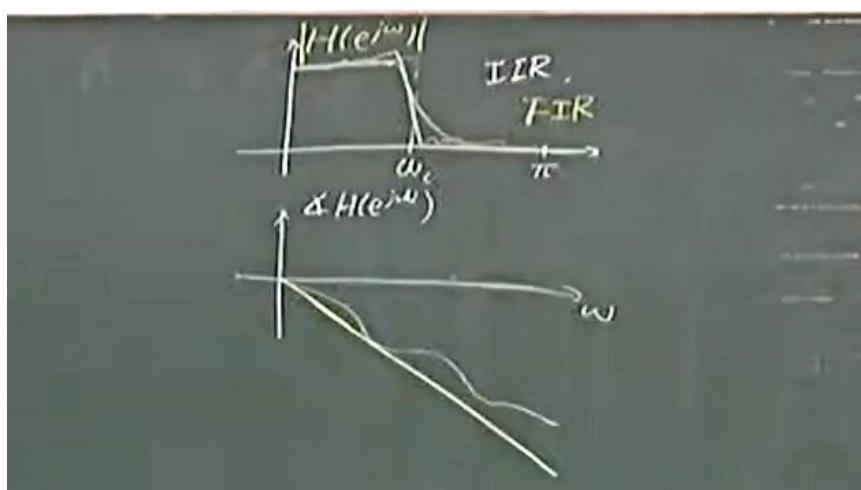
Filter categories and their advantages

- ① *Infinite impulse response (IIR) filters*
 - Implemented by LCCDE
 - Advantage: Usually has a smaller computation load than FIR filters that meet the same *specification* (to be elaborated later)
 - Drawback: Group delay is not constant #dispersion
- ② *Finite impulse response (FIR) filters*
 - Implemented by convolution; computation load can be reduced via *fast Fourier transform (FFT)*
 - Two methods will be covered: the window method, and the optimal method
 - Commonly used windows also include two kinds: the cosine family, and the Kaiser family.
 - Advantage: *Linear-phase* design, i.e., constant group delay

Navigation icons: Home, Back, Forward, Stop, Refresh, etc.

Page: 178

11



IIR preview: The key technique

The idea is to borrow from an *analog prototype* using *bilinear transformation*.

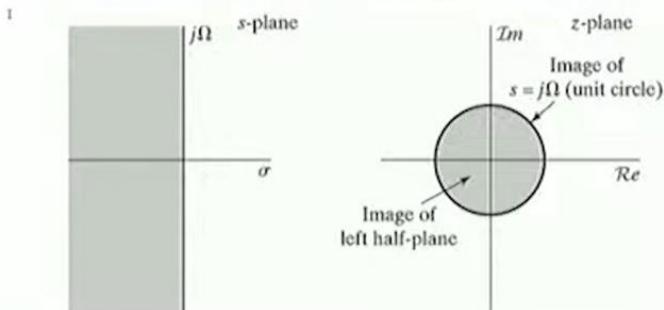


Figure 1: A mapping between the s -domain and the z -domain; $s = s(z)$

IIR preview: An example

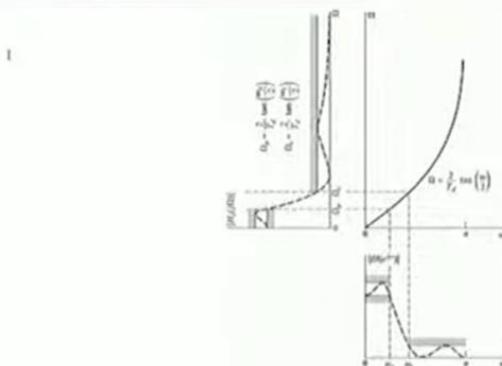
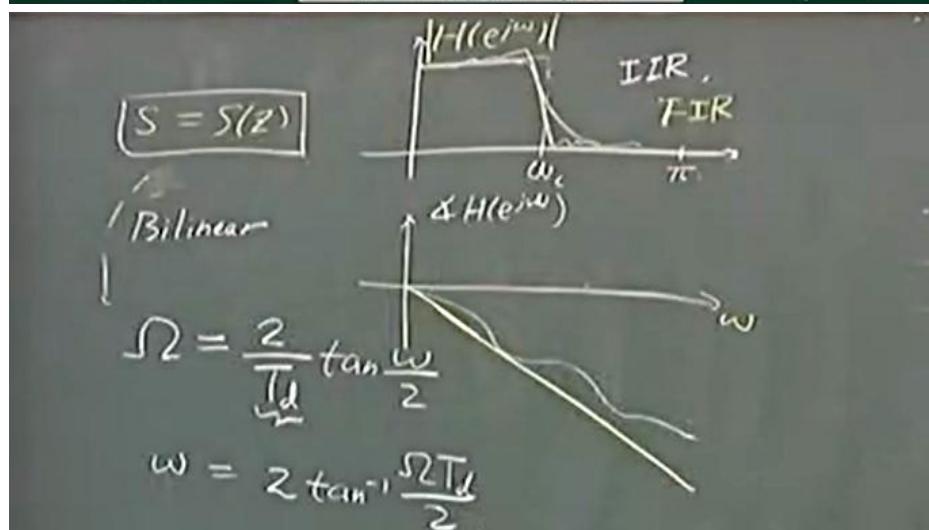


Figure 2: Note that $\Omega \in [0, \infty)$ is mapped to $0 \leq \omega < \pi$.



FIR overview: the first step

The idea is to approximate the ideal filter, but make its length finite. In Homework 2 Problem 1, you have seen that

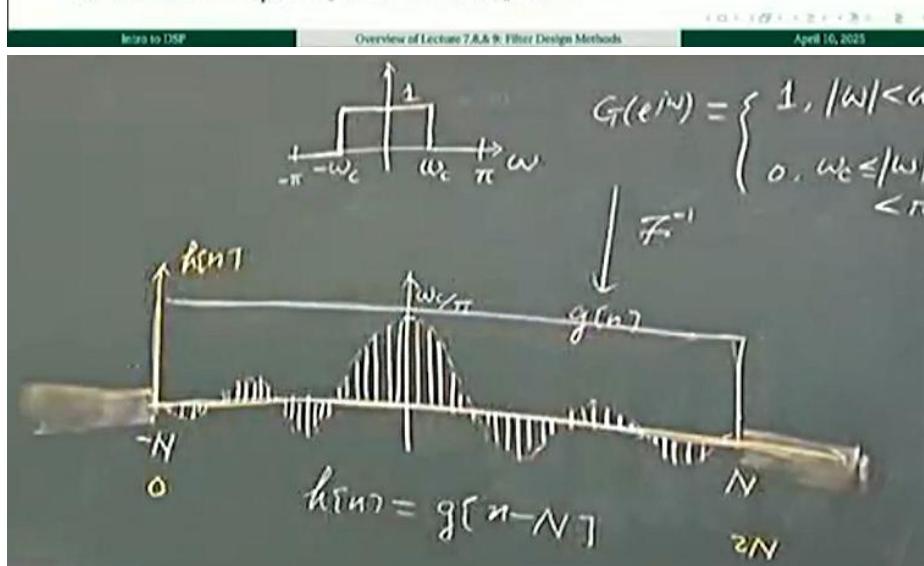
$$g[n] = \begin{cases} \frac{\sin \omega_c n}{\pi n}, & n \neq 0 \\ \frac{\omega_c}{\pi}, & n = 0 \end{cases}$$

is the impulse response for an ideal low-pass filter with a cutoff frequency at ω_c .

Then, truncate $g[n]$ at $-N \leq n \leq N$; that is, let's define

$$h_N[n] = \begin{cases} g[n], & -N \leq n \leq N \\ 0, & \text{elsewhere.} \end{cases}$$

This can already be called a "design", but we can do better by multiplying $h_N[n]$ with a window function $w_{zp}[n]$. (zp stands for "zero-phase")



FIR: Commonly used windows

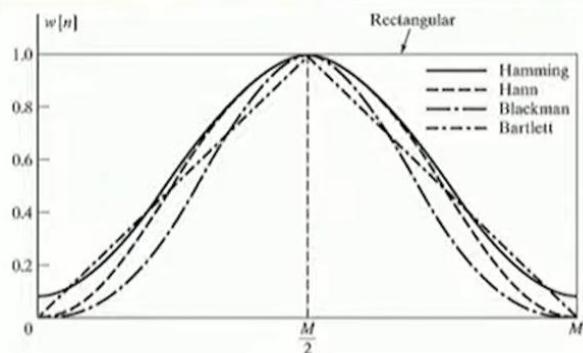
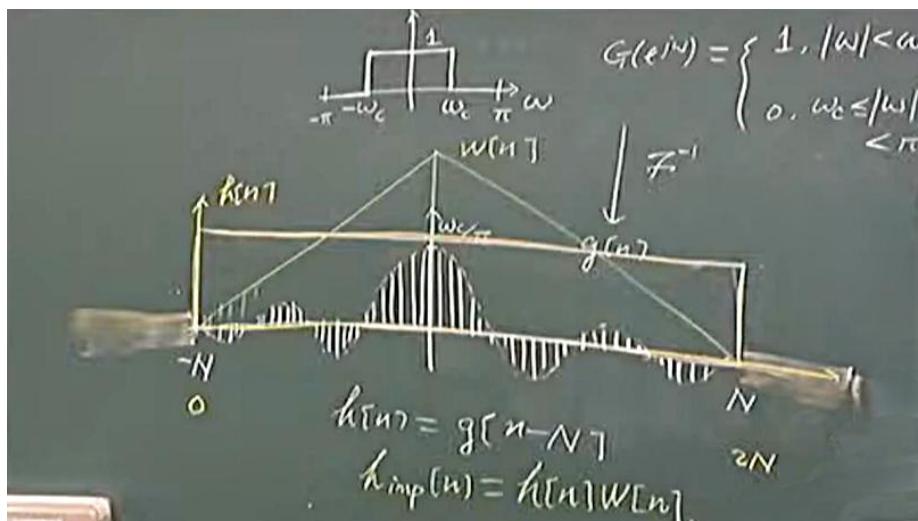


Figure 3: Here, $M = 2N$, and $w_{zp}[n] = w[n - N]$.



Filter design specs tradeoffs

Question: How do we state the design goal(s)?

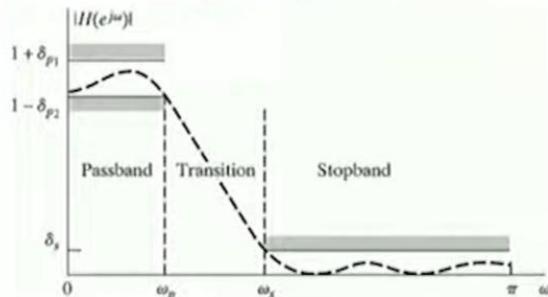


Figure 4: Tolerance scheme and design parameters. δ_{p1}, δ_{p2} : Passband tolerance. δ_s : stopband tolerance. ω_p : edge frequency.

Intro to DSP

Overview of Lecture 7 & 9: Filter Design Methods

April 16, 2025

Optimal FIR filter design

It turns out that filter design can be formulated as minimax problem:

Find (i.e., design) $\{h[0], h[1], \dots, h[L]\}$ such that

$$\max_{\omega \in F} |E(\omega)|$$

is minimized, where $E(\omega)$ denotes a user-defined error function.

The optimization process requires applying the *alternation theorem* in polynomial theory, and a clever use of the Chebyshev polynomial $T_n(x) := \cos(n \cos^{-1} x)$.

Intro to DSP

Overview of Lecture 7 & 9: Filter Design Methods

April 16, 2025

