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Lecture3 Selected Properties of Discrete-time

Fourier Transform

Motivation and Definition

Definitlon: For any sequence x{n), we define its discrete-time Fourier transform (DTFT)
as follows,

o0
X(@@®):= Y xinje ",

n=-00

Remarks: The unit of @ can be regarded as rad/sample. The signal x{n] should be seen
as the outcome of sampling a continuous-time signal x(¢); that is, x(n] = x(nT) with a
non-specified sampling period 7. To convert between w (rad/sample) and Q (rad/s),
use the relation w = TQQ.

Exercise: If sampling rate is 48 kHz, which frequency in Hz does w = n/6 represent?
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Inverse Transform

We can show that

n
xin) = —l—-f X(e) e do.
21 J-n
Check:

Several Properties (from O&S Sec. 2.8-2.9)

@ Periodicity: X (¢/“*29) = X (&®).

@ If x(n] € R, Vn, then X(e ™) = [X(e))*.!

® If x[n) € R and x[-n] = x{n), Vn, then X(&") is real.

O If yln) = xIn— m) (where m s an integer of course), then Y(e") = e ¥ X(e"),

©® Convolution: Define
yin) = (x+ h)(n):= ) xIklhin— k]
I3

yln] is called the convolution of x(n) and h(n]. Note that x * h = h = x for arbitrary
sequences x{n] and h[n]. We have

Y(e®) = X(e™)H(e").

for all w € =, ). This property is called the convolution theorem.
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A theorem related to the energy

Here is a nice property regarding the energy of a signal.

Parseval’s theorem
1f Y, [x[n]|* < oo, then
1 R
Y lxni = — f 1X(e*)* dw.
n 21 J-x

Implication: Energy can be calculated in the time domain or in the frequency domain.
Contemplation: In the language of linear algebra, we say that Fourier transform....
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ixtended reading on the existence of DTFT (optional)

DTFT has different notions of “existing”.

The first notion is if ¥, |x[n]| < 0o, then ¥, x(n]e~*" converges for any w € R. This
condition is sufficient but not necessary for DTFT to converge.

The second notion is, if ¥, |x(n]| = oo but ¥, 1x{n]|? < oo, then

J

X(@”):= lim x{n)e n
N""”n::ZN

converges for all w € R,




