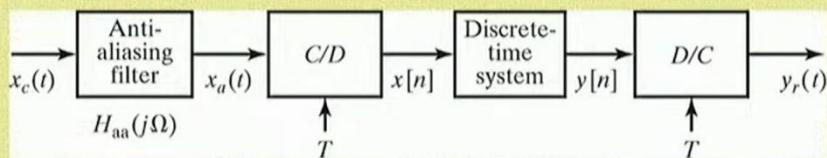


Lecture 1 Discrete-time Sampling of Continuous Signals

5

Overall workflow of DSP (C = continuous, D = discrete)



Filters with arbitrary *frequency response* can be implemented by the following equation:

$$y[n] = - \sum_{k=1}^M a_k y[n-k] + \sum_{k=0}^N b_k x[n-k]$$

6

Different notions of Fourier transform (FT)

- The continuous-time FT

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

- The discrete-time FT

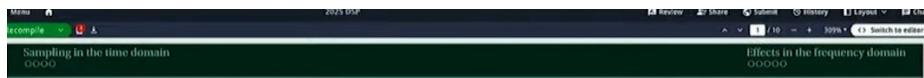
- what for? #impulseresponse
- #lineartimeinvariant #convolution

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- The Discrete FT

- The Fast FT (FFT)

- The short-time FT (STFT)



Lecture 1: Discrete-time Sampling of Continuous Signals

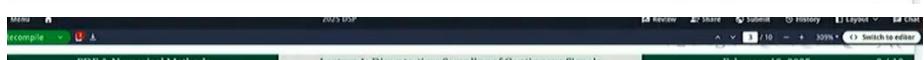
Prof. Yi-Wen Liu

EE3660 Introduction to Digital Signal Processing
National Tsing Hua University

February 19, 2025

① Sampling in the time domain

② Effects in the frequency domain



Definition and Notations

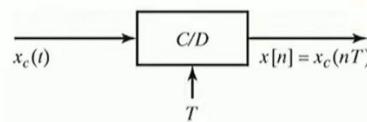


Figure 1: A system diagram of continuous to discrete time conversion. T : sampling period; $n \in \mathbb{Z}$.

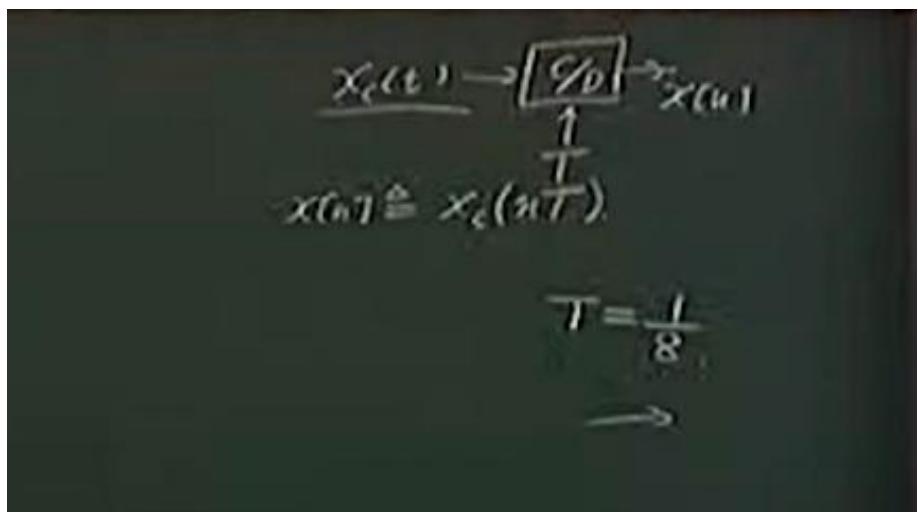
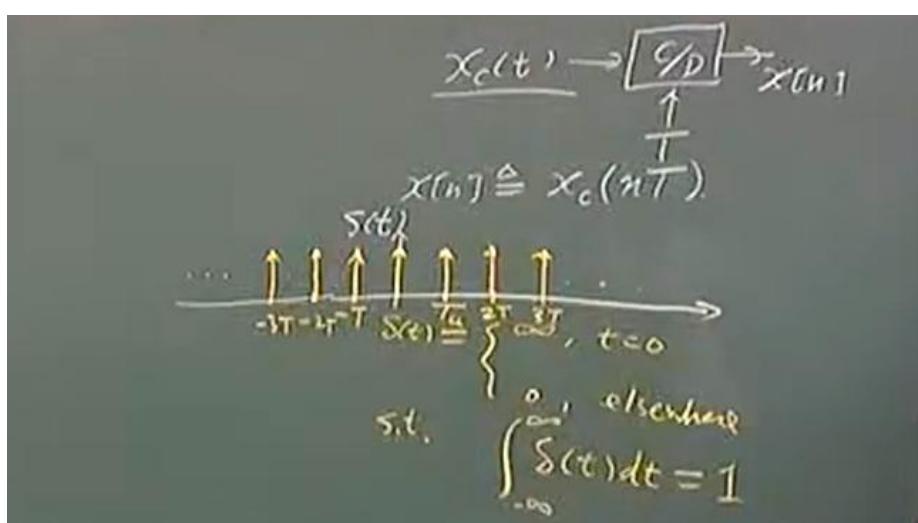
Remarks: $x[n]$ is not yet called *digital*, because arbitrary real numbers cannot be stored by a computer. We will come back to this when we discuss *quantization*.

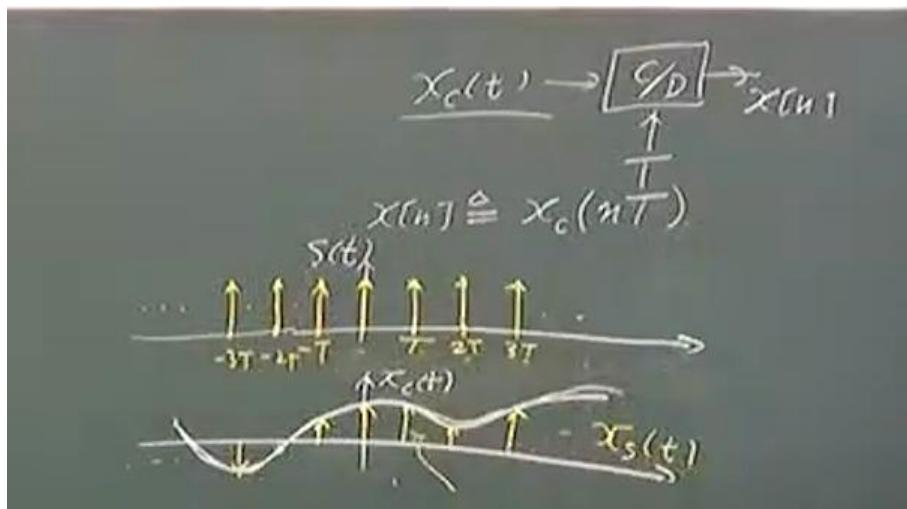
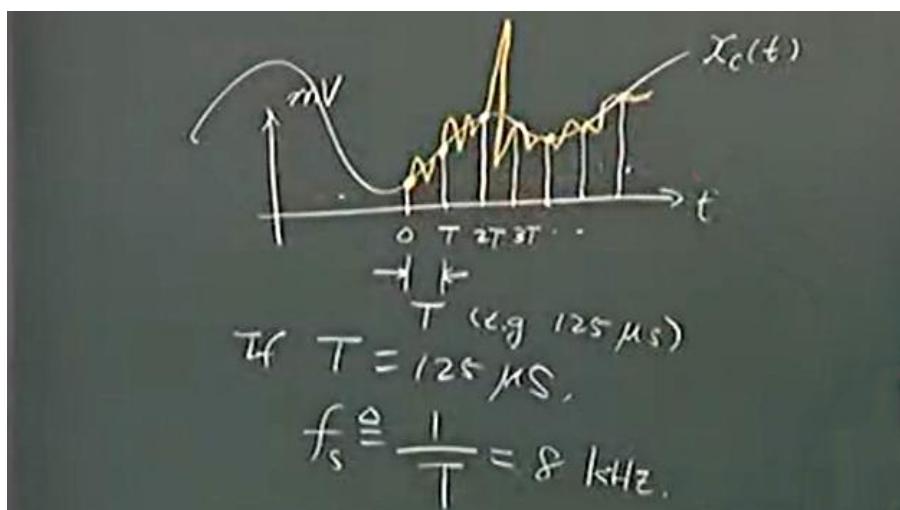
Question: Is C/D invertible?

Sampling in the time domain
Effects in the frequency domain

However, if $x_c(t)$ is *band-limited* (i.e., if the bandwidth is finite) it becomes possible to reconstruct $x_c(t)$ from $x[n] = x_c(nT)$.

Roughly speaking, we require the *sampling frequency* $f_s = 1/T$ to be higher than two times the bandwidth B .





Sampling in the time domain

Effect of sampling in the frequency domain: Preparation

Define $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$, and $x_s(t) = x_c(t)s(t)$.

The *continuous-time Fourier transform* is defined as follows,

$$\mathcal{F}(x(t)) = X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt.$$

Notations: $j = \sqrt{-1}$, $e^{j\theta} = \cos\theta + j\sin\theta$, and Ω denotes the frequency variable with a unit of rad/s. If we write $\Omega = 2\pi f$, the unit of f will be Hz. $X(j\Omega)$ is also called the spectrum of $x(t)$.

Sampling in the time domain
Effects in the frequency domain

Derivation of aliasing in the frequency domain

Recall $s(t) := \sum_n \delta(t - nT)$.¹ It turns out that its Fourier transform is

$$S(j\Omega) := \mathcal{F}(s(t)) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - k\frac{2\pi}{T}\right).$$

i.e., we can write $s(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \exp(jk\frac{2\pi}{T}t)$. Therefore,

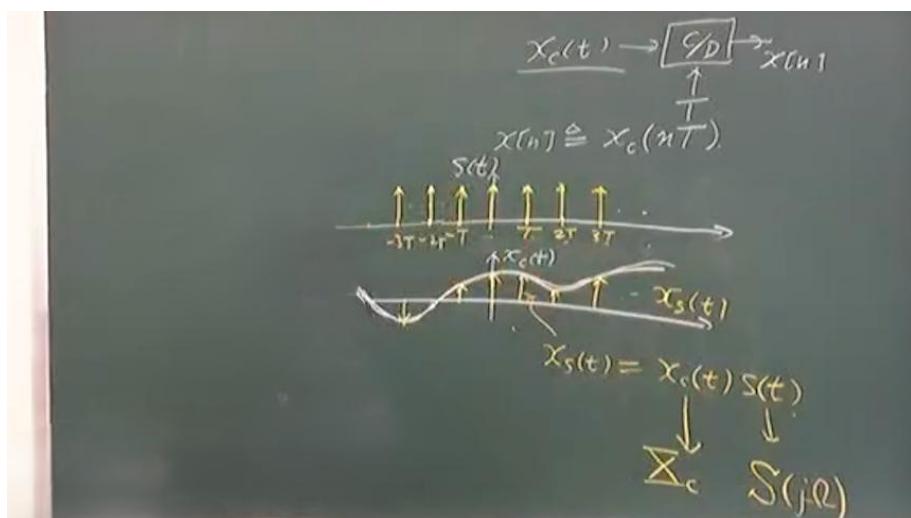
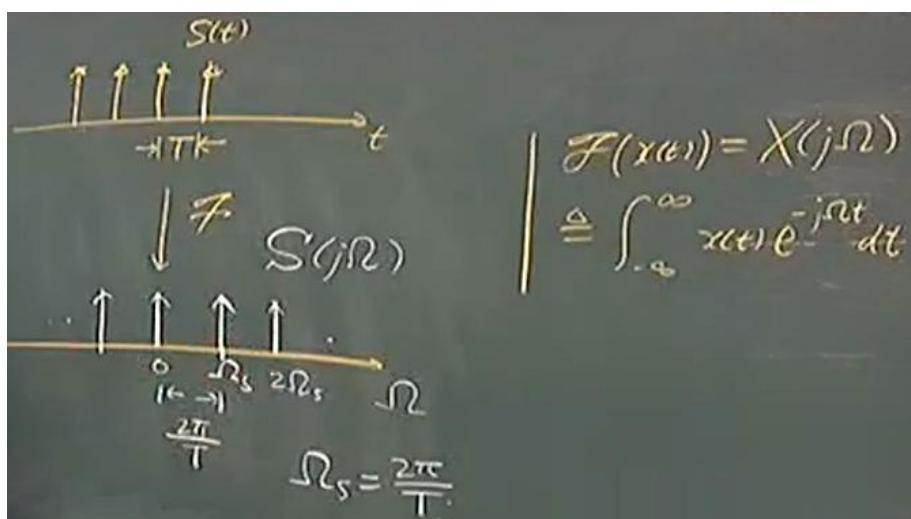
$$X_s(j\Omega) = \mathcal{F}(x_c(t)s(t)) \quad (1)$$

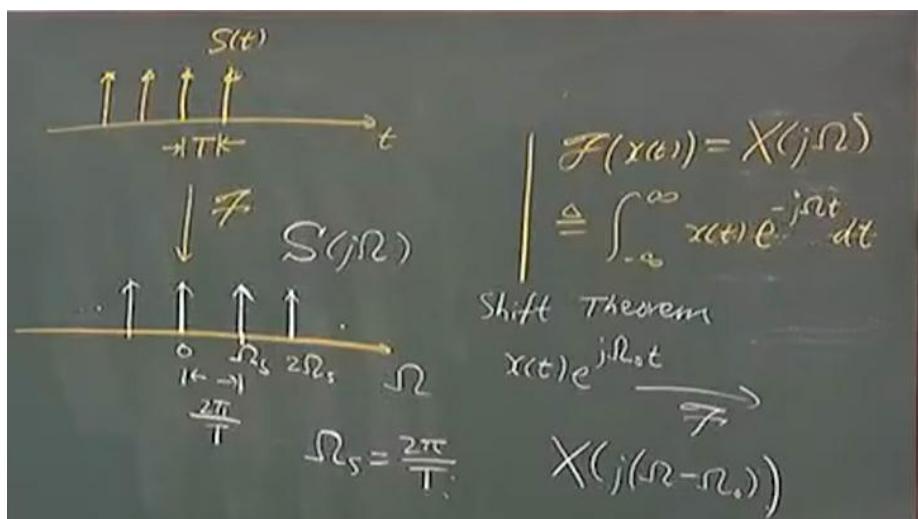
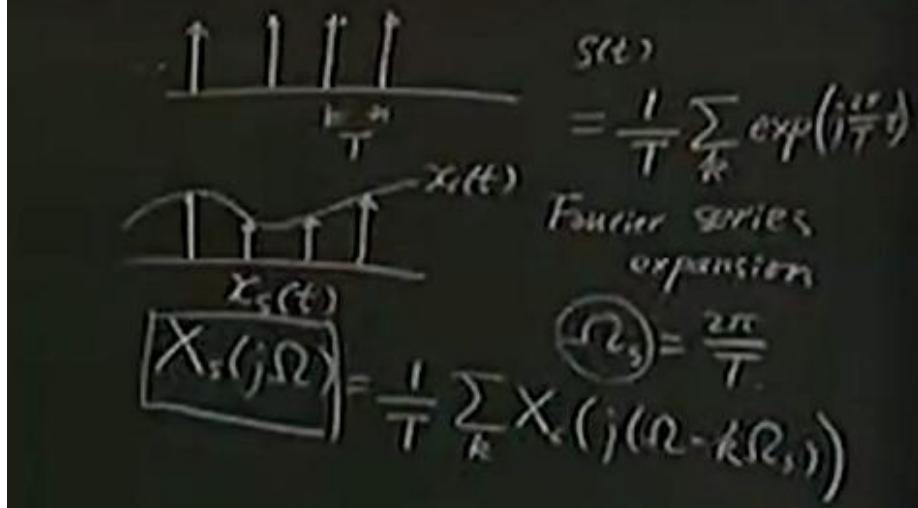
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} \mathcal{F}\left(x_c(t) \exp\left(jk\frac{2\pi}{T}t\right)\right) \quad (2)$$

$$= \frac{1}{T} \sum_k X_c(j(\Omega - k\Omega_s)). \quad (3)$$

where $\Omega_s = 2\pi/T = 2\pi f_s$.

¹In this course, if the range of summation is not specified, we mean summation from $-\infty$ to ∞ .



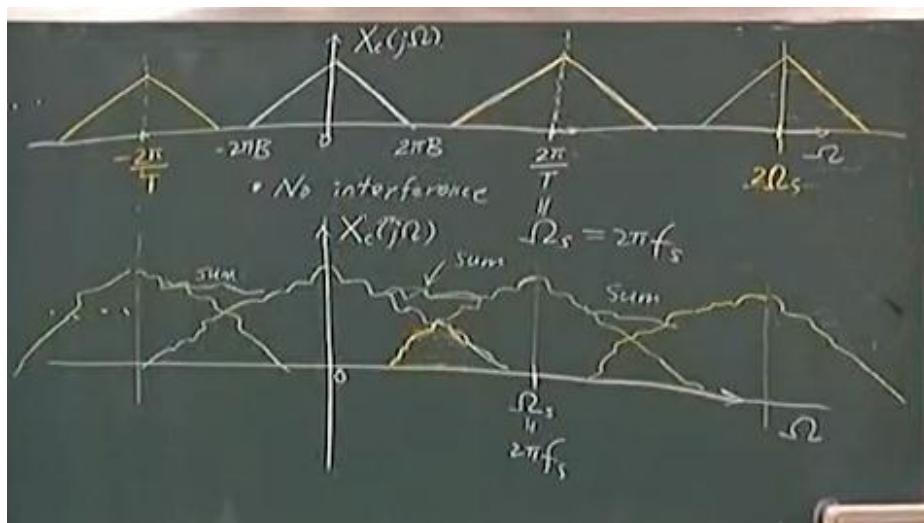


Sampling in the time domain
Effects in the frequency domain

Exercise: Let's make a sketch of Eq. (3)

Suggestion: We want to ensure that $f_s = \frac{1}{T} > 2B$, where B denotes the (single-side) bandwidth of the signal.

Historical Question: What if $f_s = 8000$ Hz but $B \approx 6000$ Hz?



Sampling in the time domain

The Nyquist-Shannon Sampling Theorem

Theorem (p. 189 of O&S)

Suppose that $\mathcal{F}(x_c(t)) = X_c(j\Omega)$, and $\exists \Omega_N < \infty$ such that $X_c(j\Omega) = 0$ for all $|\Omega| > \Omega_N$. Then, $x_c(t)$ can be uniquely determined by its samples $x[n] = x_c(nT)$ if $\Omega_s = \frac{2\pi}{T} > 2\Omega_N$.

We will discuss how to "uniquely determine" $x_c(t)$. This involves *discrete- to continuous-time (D/C) conversion*.

Final Remarks:

- ① We usually assume that $x_c(t) \in \mathbb{R}$.
- ② Consequently, $|X_c(-j\Omega)| = |X_c(j\Omega)|$.
- ③ Interesting fact*: a band-limited signal cannot also be time-limited.

$$\begin{aligned}
 & \boxed{\text{If } x(t) \in \mathbb{R}, \forall t} \\
 & X(-j\Omega) = X(j\Omega) \\
 \Rightarrow & \left\{ \begin{array}{l} |X(-j\Omega)| = |X(j\Omega)| \\ \text{And } X(-j\Omega) = -X(j\Omega) \end{array} \right.
 \end{aligned}$$

